Background: Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose-response relationship in the application of hydrogen is puzzling. We attempted to identify the dose-response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model.
Methods: In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model.
Results: Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5.
Conclusions: Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose-response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944674 | PMC |
http://dx.doi.org/10.1186/1472-6882-14-81 | DOI Listing |
Poult Sci
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
In this study, phthalate inulin nanoparticles (PINs) were chemically modified and characterized. The internalization of PINs into the probiotic E. faecalis, which delivering Fiber2 protein of fowl adenovirus serotype 4 (FAdV-4), was investigated.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Gastroenterology, The Air Force Medical Center, Beijing 100142, China.
Background: Simulated microgravity environment can lead to gastrointestinal motility disturbance. The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor (SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells. Moreover, intestinal flora can also affect the regulation of SCF/c-kit signaling pathway, thus affecting the expression of Cajal stromal cells.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
Background: Postoperative nausea and vomiting (PONV) remains a frequent and uncomfortable complication in women undergoing robotic gynecological procedures. Despite the use of various preventive strategies, PONV continues to negatively impact recovery and increase healthcare expenses. This study aimed to evaluate whether the preoperative use of sugar-free chewing gum could effectively minimize the dependence on anti-emetic drugs in women undergoing robot-assisted laparoscopic surgery for uterine myomas.
View Article and Find Full Text PDFFoods
December 2024
Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
This study aimed to investigate the protective effects and defense mechanisms of a sesame meal protein hydrolysate against ethanol-induced acute gastric mucosal injury in mice. The target peptides in the hydrolysate were identified by LC-MS/MS, the activity was predicted by PeptideRanker, and the KM mice were orally administered distilled water, a sesame peptide, and omeprazole for 24 consecutive days. Acute gastric mucosal injury was then induced in mice with 70% ethanol, except for the CK group.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain.
Alterations in the gastric mucosal barrier, one of whose fundamental components is phosphatidylcholine (PC), may play an important role in the pathophysiology of erosive gastritis secondary to sepsis. Pentoxifylline (PTX) has been shown to reduce tissue damage in various experimental models of sepsis. The aim of this study was to investigate the effect of PTX on gastric mucosa PC synthesis, leukocyte infiltration, arachidonic acid-related metabolites, inflammation, oxidative stress, NO, CO, and somatostatin in a rat model of LPS-induced sepsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!