Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools.

Expert Opin Drug Metab Toxicol

Faculdade de Farmácia - UFMG, Departamento de Análises Clínicas e Toxicológicas, Av. Antônio Carlos, 6.627 - Pampulha, 31270-901 - Belo Horizonte - MG , Brazil +55 31 3547 3462 ;

Published: April 2014

Introduction: Impaired bile formation leads to the accumulation of cytotoxic bile salts in hepatocytes and, consequently, cholestasis and severe liver disease. Knowledge of the role of hepatobiliary transporters, especially the bile salt export pump (BSEP), in the pathogenesis of cholestasis is continuously increasing.

Areas Covered: This review provides an introduction into the role of these transport proteins in bile formation. It addresses the clinical relevance and pathophysiologic consequences of altered functions of these transporters by genetic mutations and drugs. In particular, the current practical aspects of identification and mitigation of drug candidates with liver liabilities employed during drug development, with an emphasis on preclinical screening for BSEP interaction, are discussed.

Expert Opinion: Within the potential pathogenetic mechanisms of acquired cholestasis, the inhibition of BSEP by drugs is well established. Interference of a new compound with BSEP transport activity should raise a warning sign to conduct follow-up experiments and to monitor liver function during clinical development. A combination of in vitro screening for transport interaction, in silico predicting models, and consideration of physicochemical and metabolic properties should lead to a more efficient screening of potential liver liability.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.2014.884069DOI Listing

Publication Analysis

Top Keywords

hepatobiliary transporters
8
bile formation
8
transporters drug-induced
4
cholestasis
4
drug-induced cholestasis
4
cholestasis perspective
4
perspective current
4
current identifying
4
identifying tools
4
tools introduction
4

Similar Publications

Coacervate vesicles assembled by liquid-liquid phase separation improve delivery of biopharmaceuticals.

Nat Chem

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

DYRK1A-TGF-β signaling axis determines sensitivity to OXPHOS inhibition in hepatocellular carcinoma.

Dev Cell

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.

View Article and Find Full Text PDF

Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.

View Article and Find Full Text PDF

A family with gallstone disease: defining inherited risk in the era of clinical genetic testing.

Intern Emerg Med

January 2025

Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.

Gallstones are among the most frequent hepatobiliary conditions. Although in most cases, they remain asymptomatic, they can cause complications and, in such cases, invasive treatments like endoscopic retrograde cholangiography (ERC) or cholecystectomy are required. Here, we present the results of genetic testing of a single family with a high incidence of symptomatic gallstones and cholestatic liver phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!