Formation of self-assembled nanoplates via hydrogenation of epitaxial Pd film.

Nano Lett

Department of Mechanical Engineering, University of Maryland , 2181 Glenn L. Martin Hall, Bldg 088, College Park, Maryland 20742, United States.

Published: March 2015

Understanding the relationship between the uptake of hydrogen gas and hydride phase formation and evolution in metal solids is a phenomenon of significant technological importance due to current development of hydrogen storage devices, sensors, and membranes. The performance of these devices is degraded by structural defect formation during incoherent metal-hydride phase transformation. In this work, atomic force and scanning electron microscopy reveal formation of nanoplates along the ⟨111⟩ directions in a (111) epitaxial Pd film. These nanostructures are observed after high temperature and high pressure gas phase hydrogenation and cooling in ambient temperature. Transmission electron microsocpy (TEM) analysis of a posthydrogenated film did not show considerable plastic deformation. The size of the nanoplates increased with increasing Pd film thickness. A formation mechanism of nanoplates is proposed: cooling the sample reactor in ambient temperature after hydrogen loading induced formation of coherent or partially coherent β-phase plates along {100} planes corresponding to minimum elastic energy of interaction between metal and hydride phases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl404410vDOI Listing

Publication Analysis

Top Keywords

epitaxial film
8
ambient temperature
8
formation
6
formation self-assembled
4
nanoplates
4
self-assembled nanoplates
4
nanoplates hydrogenation
4
hydrogenation epitaxial
4
film
4
film understanding
4

Similar Publications

Unraveling the Growth Dynamics of Rutile SnGeO Using Theory and Experiment.

Nano Lett

December 2024

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.

View Article and Find Full Text PDF

Suboxides and subselenides: intermediate reaction products to form GaO, GaSe, InO, InSe, SnO, and SnSe during molecular-beam epitaxy.

Phys Chem Chem Phys

December 2024

Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

The molecular-beam epitaxial (MBE) growth of III-O and IV-O materials (, GaO, InO, and SnO) is known to be reaction-limited by complex 2-step kinetics and the desorption of volatile suboxides (, GaO, InO, SnO). We find that the different surface reactivities of suboxides and respective elements (, Ga, In, Sn) with active oxygen define the film-growth-windows (FGWs) and suboxide-formation-windows (SFWs) of III-O and IV-O materials, respectively. To generalize, we provide elementary reaction pathways and respective Gibbs energies to form binary III-O, III-Se, IV-O, and IV-Se ground-states as well as their subcompounds during their MBE growth.

View Article and Find Full Text PDF

Recently, the bilayer nickelate LaNiO has been discovered as a new superconductor with transition temperature T near 80 K under high pressure. Despite extensive theoretical and experimental work to understand the nature of its superconductivity, the requirement of extreme pressure restricts the use of many experimental probes and limits its application potential. Here, we present signatures of superconductivity in LaNiO thin films at ambient pressure, facilitated by the application of epitaxial compressive strain.

View Article and Find Full Text PDF

Thin (~50 nm thick) BaM hexaferrite (BaFeO) films were grown on (1-102) and (0001) cut α-AlO (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol are shown. The surface morphology, structural and magnetic properties of films were studied using atomic force microscopy, reflected high-energy electron diffraction, three-dimensional X-ray diffraction reciprocal space mapping, powder X-ray diffraction, magneto-optical, and magnetometric methods.

View Article and Find Full Text PDF

This study explores the concurrent formation of surface perforations, parallel cylinders, and double gyroids in symmetric PS--PMMA/hPS blend films during isothermal annealing at 205 and 240 °C. By controlling the weight fraction ratio of PS--PMMA to hPS at 75/25, we systematically examined the impact of film thickness and annealing temperature on nanodomain development. Using GISAXS and SEM, we observed that thin films rapidly formed surface perforations and underlying parallel cylinders at both annealing temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!