The ability of mature smooth muscle cells (SMCs) to modulate their phenotype in response to environmental cues is a critical issue related to vascular diseases. A tissue engineered vascular graft shall promote the contractile phenotype of vascular SMCs. To this aim, Tecophilic/gelatin (TP/gel) was electrospun at different weight ratios of TP/gelatin (100:0, 70:30, 50:50, 30:70), leading to differences in biochemical and mechanical properties of the nanofibers which in turn influenced the phenotype of SMCs. Results indicated that both the substrate with higher ligand density and lower stiffness could enhance SMC contractility and reduce cell proliferation. However, observing the highest SMCs contractility on electrospun TP(70)/gel(30) among the composite scaffolds demonstrated stiffness as the most critical parameter. Due to conflicting effects of softness versus minor fraction of gelatin (reduced ligand density) within TP(70)/gel(30) fibers, a relatively high proliferation of SMCs was still observed on TP(70)/gel(30) scaffold. The surface of TP(70)/gel(30) scaffold was further modified through physical adsorption of gelatin molecules so as to increase the ligand density on its surface, whereby a functional vascular construct that promotes the contractile behavior of SMCs with low cell proliferation was developed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am405673hDOI Listing

Publication Analysis

Top Keywords

ligand density
12
smooth muscle
8
muscle cells
8
cell proliferation
8
tp70/gel30 scaffold
8
smcs
6
phenotypic modulation
4
modulation smooth
4
cells chemical
4
chemical mechanical
4

Similar Publications

Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.

View Article and Find Full Text PDF

Computational insights into the redox properties and electronic structures of [Tc=O] complexes: Implications for Tc-radiopharmaceuticals.

J Mol Graph Model

January 2025

"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.

Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.

View Article and Find Full Text PDF

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

MiR-125b-5p ameliorates ox-LDL-induced vascular endothelial cell dysfunction by negatively regulating TNFSF4/TLR4/NF-κB signaling.

BMC Biotechnol

January 2025

Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China.

Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood.

Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!