Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931831 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090273 | PLOS |
Mol Cell Biochem
April 2022
Department of Biochemistry, Faculty of Medicine, University Alberta, Edmonton, AB, T6G 2H7, Canada.
In breast cancer, it is the resulting metastasis that is the primary cause of fatality. pH regulatory proteins and the tumor microenvironment play an important role in metastasis of cancer cells and acid-extruding proteins are critical in this process. There are several types of breast cancer and triple-negative breast cancer tends to be more metastatic and invasive and is itself is composed of several types.
View Article and Find Full Text PDFFront Oncol
May 2020
Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related death, with a 5-year survival of <10% and severely limited treatment options. PDAC hallmarks include profound metabolic acid production and aggressive local proliferation and invasiveness. This phenotype is supported by upregulated net acid extrusion and epithelial-to-mesenchymal transition (EMT), the latter typically induced by aberrant transforming growth factor-β (TGFβ) signaling.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
June 2019
The China-Japan Union Hospital, Jilin University, Changchun 130033, China; MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Jilin University, Changchun 130012, China; Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. Electronic address:
It has been observed that both cancer tissue cells and normal proliferating cells (NPCs) have the Warburg effect. Our goal here is to demonstrate that they do this for different reasons. To accomplish this, we have analyzed the transcriptomic data of over 7000 cancer and control tissues of 14 cancer types in TCGA and data of five NPC types in GEO.
View Article and Find Full Text PDFSemin Cancer Biol
April 2017
Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark. Electronic address:
Acidosis is characteristic of the solid tumor microenvironment. Tumor cells, because they are highly proliferative and anabolic, have greatly elevated metabolic acid production. To sustain a normal cytosolic pH homeostasis they therefore need to either extrude excess protons or to neutralize them by importing HCO, in both cases causing extracellular acidification in the poorly perfused tissue microenvironment.
View Article and Find Full Text PDFJ Physiol
February 2017
Biological Sciences & Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33431, USA.
Key Points: Intracellular pH regulation is vital to neurons as nerve activity produces large and rapid acid loads in presynaptic terminals. Rapid clearance of acid loads is necessary to maintain control of neurotransmission, but neuronal acid clearance mechanisms remain poorly understood. Glutamate is loaded into synaptic vesicles via the vesicular glutamate transporter (VGLUT), a mechanism conserved across phyla, and this study reports a previously unknown role for VGLUT as an acid-extruding protein when deposited in the plasmamembrane during exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!