Antitumor vaccination using synthetic long peptides (SLP) is an additional therapeutic strategy currently under development. It aims to activate tumor-specific CD8(+) CTL by professional APCs such as DCs. DCs can activate T lymphocytes by MHC class I presentation of exogenous antigens - a process referred to as "cross-presentation". Until recently, the intracellular mechanisms involved in cross-presentation of soluble antigens have been unclear. Here, we characterize the cross-presentation pathway of SLP Melan-A16-40 containing the HLA-A2-restricted epitope26-35 (A27L) in human DCs. Using confocal microscopy and specific inhibitors, we show that SLP16-40 is rapidly taken up by DC and follows a classical TAP- and proteasome-dependent cross-presentation pathway. Our data support a role for the ER-associated degradation machinery (ERAD)-related protein p97/VCP in the transport of SLP16-40 from early endosomes to the cytoplasm but formally exclude both sec61 and Derlin-1 as possible retro-translocation channels for cross-presentation. In addition, we show that generation of the Melan-A26-35 peptide from the SLP16-40 was absolutely not influenced by the proteasome subunit composition in DC. Altogether, our findings propose a model for cross-presentation of SLP which tends to enlarge the repertoire of potential candidates for retro-translocation of exogenous antigens to the cytosol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937416 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089897 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!