PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933532 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089396 | PLOS |
Sci Rep
January 2025
Universidad Europea del Atlántico. Isabel Torres 21, Santander, 39011, Spain.
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.
Background: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.
Results: Therefore, to overcome these obstacles multifunctional core-shell BMS@PtAu nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. PtAu clusters are released from BMS@PtAu NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous HO to generate O as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose.
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States.
Nucleic Acids Res
January 2025
Department of Physics and Optical Science, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
DNA transposons have emerged as promising tools in both gene therapy and functional genomics. In particular, the Sleeping Beauty (SB) DNA transposon has advanced into clinical trials due to its ability to stably integrate DNA sequences of choice into eukaryotic genomes. The efficiency of the DNA transposon system depends on the interaction between the transposon DNA and the transposase enzyme that facilitates gene transfer.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Research Center, Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!