Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931707 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089027 | PLOS |
J Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFBiomaterials
December 2024
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China. Electronic address:
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Animal Science, University of Illinois, Urbana, IL 61801, USA.
Peroxidized lipids have been shown to reduce broiler performance whereupon it was theorized that dietary peroxide value (PV) plus anisidine value (AnV) may be predictive of broiler performance. In experiment (EXP) 1, 64 pens (8 broilers/pen) were fed diets containing 8 levels of peroxidized soybean oil (SO). Broilers were fed diets from 7 to 35 d of age with 8 replications per dietary treatment.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dr PDKV, Akola, Maharashtra, India.
Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!