Toward a semi-self-paced EEG brain computer interface: decoding initiation state from non-initiation state in dedicated time slots.

PLoS One

Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America ; Graduate Program in Neurosciences, University of California San Diego, La Jolla, California, United States of America.

Published: January 2015

Brain computer interfaces (BCIs) offer a broad class of neurologically impaired individuals an alternative means to interact with the environment. Many BCIs are "synchronous" systems, in which the system sets the timing of the interaction and tries to infer what control command the subject is issuing at each prompting. In contrast, in "asynchronous" BCIs subjects pace the interaction and the system must determine when the subject's control command occurs. In this paper we propose a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is able to determine when control commands are issued by decoding the subject's intention for initiating control in dedicated time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931691PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088915PLOS

Publication Analysis

Top Keywords

brain computer
8
initiation state
8
state non-initiation
8
non-initiation state
8
dedicated time
8
time slots
8
control command
8
idea bci
8
initiation non-initiation
8
non-initiation states
8

Similar Publications

Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.

J Comput Neurosci

January 2025

Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.

This paper presents an in-depth theoretical analysis of the orientation selectivity properties of simple cells and complex cells, that can be well modelled by the generalized Gaussian derivative model for visual receptive fields, with the purely spatial component of the receptive fields determined by oriented affine Gaussian derivatives for different orders of spatial differentiation. A detailed mathematical analysis is presented for the three different cases of either: (i) purely spatial receptive fields, (ii) space-time separable spatio-temporal receptive fields and (iii) velocity-adapted spatio-temporal receptive fields. Closed-form theoretical expressions for the orientation selectivity curves for idealized models of simple and complex cells are derived for all these main cases, and it is shown that the orientation selectivity of the receptive fields becomes more narrow, as a scale parameter ratio , defined as the ratio between the scale parameters in the directions perpendicular to vs.

View Article and Find Full Text PDF

. The released CMRxRecon2024 dataset is currently the largest and most protocol-diverse publicly available k-space dataset including multi-modality and multi-view cardiac MRI data from 330 healthy volunteers, and each one covers standardized and commonly used clinical protocols. ©RSNA, 2025.

View Article and Find Full Text PDF

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task.

View Article and Find Full Text PDF

Intracranial complications of otitis media are rare but pose a significant risk of morbidity and mortality. We report a case of a 27-year-old man with cognitive impairment who presented with fever, right-sided otalgia, otorrhea, and vomiting for three days. His neurological examination was unremarkable, and a brain computed tomography (CT) revealed right-sided otomastoiditis without intraparenchymal lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!