Background: CpG oligodeoxynucleotides (ODNs), resembling bacterial DNA, are currently tested in clinical trials as vaccine adjuvants. They have the nuclease-resistant phosphorothioate bond; the immune responses elicited differ according to the CpG ODN sequence and vaccination method. To develop a CpG ODN that can induce plasmacytoid dendritic cell (pDC)-mediated T(H)1 immunity through the mucosa, we constructed phosphodiester G9.1 comprising one palindromic CpG motif with unique polyguanosine-runs that allows degradation similar to naturally occurring bacterial DNA.
Methods: T(H)1 and T(H)2 immunity activation was evaluated by cytokine production pattern and T-bet/GATA-3 ratio in human peripheral blood mononuclear cells and mouse bone marrow cells. Adjuvanticity was evaluated in mice administered G9.1 with diphtheria toxoid (DT) through nasal vaccination.
Results: G9.1 exhibited stronger IFN-α-inducing activity than A-class CpG ODN2216 and increased T-bet/GATA-3 ratio by enhancing T-bet expression. Nasally administered G9.1 plus DT induced DT-specific mucosal IgA and serum IgG, but not IgE, responses with antitoxin activity in C57BL/6 and BALB/c mice, possibly due to IFN/BAFF production. Induction of T(H)1, but not T(H)2-type Abs depended completely on pDCs, the first in vivo demonstration by CpG ODNs.
Conclusions: G9.1 is a promising mucosal adjuvant for induction of pDC-mediated T(H)1 immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933336 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088846 | PLOS |
Theranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFNarra J
December 2024
Center for Preventive Medical Sciences, Chiba University, Chiba, Japan.
A worldwide issue, vitamin D deficiency affects pregnant mothers and babies everywhere, including Indonesia. It involves the adaptive immune system by controlling the production of pro-and anti-inflammatory cytokines and the balance between humoral (Th2) and cell-mediated (Th1) immunity. The aim of this study was to investigate the relationship between vitamin D and the cytokines IL-6 and IL-10 in infants.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Izmir Biomedicine and Genome Center, Izmir, Turkey.
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.
View Article and Find Full Text PDFSci Prog
January 2025
Oncology Department, Affiliated Wuxi Fifth People's Hospital of Jiangnan University, Wuxi, Jiangsu, PR China.
Cell division cycle-associated (CDCA) genes are dysregulated in carcinomas. Our study aims to identify similarities and differences of the clinical roles of CDCAs in breast cancer (BRCA) and to explore their potential mechanisms. In GEPIA, compared to normal tissues, expressions of CDCAs were higher in BRCA and sub-types.
View Article and Find Full Text PDFMol Pharm
January 2025
Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China.
At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!