Cannabinoid neuromodulation in the adult early visual cortex.

PLoS One

Division of Systems Neurology and Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, United States of America.

Published: December 2014

Sensory processing is an active process involving the interaction of ongoing cortical activity with incoming stimulus information. However, the modulators and circuits involved in this interaction are incompletely understood. One potential candidate is the cannabinoid-signaling system, which is known to modulate the dynamics of cortical networks. Here, we show that in the primate primary and secondary visual cortices, the cannabinoid CP55940 modulates not only population dynamics but also influences the dynamics of the stimulus-response relationship of individual neurons. At the population level, CP55940 decreases EEG power, LFP power, and LFP coherence. At the single-neuron level, intrinsic spike train dynamics appear relatively unchanged, but visual receptive fields are altered: CP55940 induced an overall delay and broadening of the temporal component of V1 and V2 spatiotemporal receptive fields. Our findings provide neurophysiologic evidence for a link between cannabinoid-signaling, network dynamics and the function of a canonical cortical circuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929390PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087362PLOS

Publication Analysis

Top Keywords

power lfp
8
receptive fields
8
dynamics
5
cannabinoid neuromodulation
4
neuromodulation adult
4
adult early
4
early visual
4
visual cortex
4
cortex sensory
4
sensory processing
4

Similar Publications

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Background: Reports indicate that depression is a common mental health issue following traumatic brain injury (TBI). Our prior research suggests that Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-related neuroinflammation, modulated by glial cells such as astrocytes, is likely to play a crucial role in the progression of anxiety and cognitive dysfunction. However, there is limited understanding of the potential of astrocytic NLRP3 in treating depression under mild TBI condition.

View Article and Find Full Text PDF

Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems.

View Article and Find Full Text PDF

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!