The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937319 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1003938 | DOI Listing |
J Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFAnal Chem
December 2024
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
Nanoelectrodes, renowned for their small size, rapid mass transport, fast response, and high spatiotemporal resolution, have been recognized as a powerful tool in biosensing, especially for single-cell analysis. However, the nanoelectrode itself has no selectivity and cannot respond to nonelectroactive substances, limiting its wide application to some extent. Herein, we propose a simple and efficient electrochemical conjugation strategy to develop an electrochemical aptamer-coupled (E-AC) sensor for detecting adenosine triphosphate (ATP) in single living cells.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA -methyladenosine (mA) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific mA (DSA-mA) for lag-free monitoring of the mA demethylase FTO activity in living cells.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
Cyanine dyes constructed for NAD(P)H near-infrared sensing utilize extended π-conjugation but often exhibit delayed fluorescence responses to NAD(P)H due to reduced positive charge density in 3-quinolinium acceptors. This study introduces deep-red and near-infrared compact cyanine dyes represented by probes and for mitochondrial NAD(P)H detection in live cells. Probes and feature a unique structural design with a double bond connection linking 3-quinolinium to strategically positioned 1-methylquinolinium acceptor units at 2- and 4-positions, correspondingly.
View Article and Find Full Text PDFFASEB J
November 2024
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA.
The sperm ability to fertilize involves the regulation of ATP levels. Because inside cells, ATP is complexed with Mg ions, changes in ATP levels result in changes in intracellular Mg concentration ([Mg]), which can be followed using intracellular Mg sensors such as Mag-520. In this work, we tested conditions known to decrease sperm ATP such as starvation and capacitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!