Craniofacial shape variation in Twist1+/- mutant mice.

Anat Rec (Hoboken)

Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania.

Published: May 2014

Craniosynostosis (CS) is a relatively common birth defect resulting from the premature fusion of one or more cranial sutures. Human genetic studies have identified several genes in association with CS. One such gene that has been implicated in both syndromic (Saethre-Chotzen syndrome) and nonsyndromic forms of CS in humans is TWIST1. In this study, a heterozygous Twist1 knock out (Twist1(+/-) ) mouse model was used to study the craniofacial shape changes associated with the partial loss of function. A geometric morphometric approach was used to analyze landmark data derived from microcomputed tomography scans to compare craniofacial shape between 17 Twist1(+/-) mice and 26 of their Twist1(+/+) (wild type) littermate controls at 15 days of age. The results show that despite the purported wide variation in synostotic severity, Twist1(+/-) mice have a consistent pattern of craniofacial dysmorphology affecting all major regions of the skull. Similar to Saethre-Chotzen, the calvarium is acrocephalic and wide with an overall brachycephalic shape. Mutant mice also exhibited a shortened cranial base and a wider and shorted face, consistent with coronal CS associated phenotypes. The results suggest that these differences are at least partially the direct result of the Twist1 haploinsufficiency on the developing craniofacial skeleton. This study provides a quantitative phenotype complement to the developmental and molecular genetic research previously done on Twist1. These results can be used to generate further hypotheses about the effect of Twist1 and premature suture fusion on the entire craniofacial skeleton.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22899DOI Listing

Publication Analysis

Top Keywords

craniofacial shape
12
mutant mice
8
twist1+/- mice
8
craniofacial skeleton
8
craniofacial
6
twist1
5
shape variation
4
twist1+/-
4
variation twist1+/-
4
twist1+/- mutant
4

Similar Publications

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Geometric morphometrics is used in the biological sciences to quantify morphological traits. However, the need for manual landmark placement hampers scalability, which is both time-consuming, labor-intensive, and open to human error. The selected landmarks embody a specific hypothesis regarding the critical geometry relevant to the biological question.

View Article and Find Full Text PDF

Transforming undergraduate dental education: the impact of artificial intelligence.

Br Dent J

January 2025

Department of Oral Medicine, Guy´s and St Thomas´ NHS Foundation Trust, London, UK; Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College London, London, UK.

Artificial intelligence (AI) is a rapidly evolving area, having had a transformative effect within some areas of medicine and dentistry. In dentistry, AI systems are contributing to clinical decision-making, diagnostics and treatment planning. Ongoing advances in AI technology will lead to further expansion of its existing applications and more widespread use within the field of dentistry.

View Article and Find Full Text PDF

Simultaneous Lefort 2 Distraction and Fronto-Orbito-Malar Advancement: Correcting Severe Upper and Midface Retrusion in a Patient With Crouzon Syndrome.

J Craniofac Surg

December 2024

Member of Sociedad Argentina de Ortodoncia, Member of International Society of Craneofacial Surgery, Member of Asociación Latinoamericana de Ortodoncia, Buenos Aires, Argentina.

Craniofacial syndromes present with exorbitism and airway obstruction as a result of upper and middle facial hypoplasia. Classical subcranial Lefort III (LF III) or monobloc distraction osteogenesis (DO) using an external craniofacial device is used to treat these deformities. These procedures are done during mixed dentition, in most cases, advancing an abnormal face, to a more normal position.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!