Annotations of protein or gene sequences from large scale sequencing projects are based on protein size, characteristic binding motifs, and conserved catalytic amino acids, but biochemical functions are often uncertain. In the large family of short-chain dehydrogenases/reductases (SDRs), functional predictions often fail. Putative tropinone reductases, named tropinone reductase-like (TRL), are SDRs annotated in many genomes of organisms that do not contain tropane alkaloids. SDRs in vitro often accept several substrates complicating functional assignments. Cochlearia officinalis, a Brassicaceae, contains tropane alkaloids, in contrast to the closely related Arabidopsis thaliana. TRLs from Arabidopsis and the tropinone reductase isolated from Cochlearia (CoTR) were investigated for their catalytic capacity. In contrast to CoTR, none of the Arabidopsis TRLs reduced tropinone in vitro. NAD(H) and NADP(H) preferences were relaxed in two TRLs, and protein homology models revealed flexibility of amino acid residues in the active site allowing binding of both cofactors. TRLs reduced various carbonyl compounds, among them terpene ketones. The reduction was stereospecific for most of TRLs investigated, and the corresponding terpene alcohol oxidation was stereoselective. Carbonyl compounds that were identified to serve as substrates were applied for modeling pharmacophores of each TRL. A database of commercially available compounds was screened using the pharmacophores. Compounds identified as potential substrates were confirmed by turnover in vitro. Thus pharmacophores may contribute to better predictability of biochemical functions of SDR enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2014.01.004 | DOI Listing |
Biotechnol Appl Biochem
December 2022
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
A novel short-chain alcohol dehydrogenase from Tarenaya hassleriana labeled as putative tropinone reductase was heterologously expressed in Escherichia coli. Purified recombinant protein had molecular weight of approximately 30 kDa on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. T.
View Article and Find Full Text PDFBioorg Chem
April 2014
Institute of Pharmacy, Faculty of Science I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle, Germany. Electronic address:
Annotations of protein or gene sequences from large scale sequencing projects are based on protein size, characteristic binding motifs, and conserved catalytic amino acids, but biochemical functions are often uncertain. In the large family of short-chain dehydrogenases/reductases (SDRs), functional predictions often fail. Putative tropinone reductases, named tropinone reductase-like (TRL), are SDRs annotated in many genomes of organisms that do not contain tropane alkaloids.
View Article and Find Full Text PDFJ Plant Physiol
July 2013
College of Life and Environmental Science, Hangzhou Normal University, 310036 Hangzhou, China.
Dendrobium nobile, a herbal medicine plant, contains many important alkaloids and other secondary metabolites with pharmacological and clinical effects. However, the biosynthetic pathway of these secondary metabolites is largely unknown. In present study, a cDNA sequence (DnTR2) that encodes a peptide with high similarity to known tropinone reductase (TR) was cloned from D.
View Article and Find Full Text PDFBMC Plant Biol
November 2012
Université de Toulouse, INPT-ENSAT, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan F-31326, France.
Background: Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved 'Rossmann-fold' structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!