A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity.

Oncotarget

Breast Biology Group, Institute of Cancer Sciences, Paterson Building, University of Manchester, Wilmslow Road, Manchester,M20 4BX,UK.

Published: February 2014

C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996659PMC
http://dx.doi.org/10.18632/oncotarget.1169DOI Listing

Publication Analysis

Top Keywords

stem cell
24
cells
21
unsorted cells
20
malignant breast
16
breast cancer
16
cxcr4
12
breast stem
12
cell activity
12
cxcr4 signalling
12
compared unsorted
12

Similar Publications

Chitosan-based injectable porous microcarriers with enhanced adipogenic differentiation and angiogenesis for subcutaneous adipose tissue regeneration.

Biomater Adv

January 2025

Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China. Electronic address:

Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis.

View Article and Find Full Text PDF

An updated systematic review about various effects of microplastics on cancer: A pharmacological and in-silico based analysis.

Mol Aspects Med

January 2025

Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:

Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis.

View Article and Find Full Text PDF

Fate erasure logic of gene networks underlying direct neuronal conversion of somatic cells by microRNAs.

Cell Rep

January 2025

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Neurogenic microRNAs 9/9 and 124 (miR-9/9-124) drive the direct reprogramming of human fibroblasts into neurons with the initiation of the fate erasure of fibroblasts. However, whether the miR-9/9-124 fate erasure logic extends to the neuronal conversion of other somatic cell types remains unknown. Here, we uncover that miR-9/9-124 induces neuronal conversion of multiple cell types: dura fibroblasts, astrocytes, smooth muscle cells, and pericytes.

View Article and Find Full Text PDF

Sinusoidal obstruction syndrome (SOS), also known as hepatic veno-occlusive disease (VOD), is a life-threatening complication of hematopoietic stem cell transplantation. In severe cases, SOS/VOD progresses to multiple organ failure with a mortality rate higher than 80%. Early diagnosis and treatment based on severity assessment improve the prognosis of severe SOS/VOD, but conventional diagnostic criteria may be insufficient for an early diagnosis.

View Article and Find Full Text PDF

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!