Identification of an estrogen receptor gene in the natural freshwater snail Bithynia tentaculata.

Gene

Centre for Environmental and Climate Research (CEC), Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.

Published: April 2014

Mollusks have received increasing interest in ecotoxicological studies but so far the available scientific analyses of how their genes are affected by anthropogenic pollutants are scarce. The focus of this study is to identify an estrogen receptor (er) gene in the common prosobranch snail Bithynia tentaculata and to test a hypothesis that 17α-Ethinylestradiol (EE2) will modulate er gene expression after short-term exposure. We set up exposure experiments with a total of 144 snails, which were collected from a natural population in southern Sweden. Snails were exposed to either 10ng/L or 100ng/L EE2 during 24h and/or 72h. From the isolated B. tentaculata RNA we successfully identified and characterized a novel er gene and phylogenetic analyses strongly indicate that the Bithynia er gene is an ortholog to the human ERα (ESR1, NR3A1). We found a significant interaction between EE2-dose and exposure duration on the er's gene expression (Two-way ANOVA; p=0.04). We also found a significant difference in the gene expression of the er when comparing the control and 100ng/L treatment groups after 72h in female snails (One-way ANOVA; p=0.047). The results from this study should be useful for future field-related studies of estrogen receptors in natural populations of mollusks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2014.02.039DOI Listing

Publication Analysis

Top Keywords

gene expression
12
estrogen receptor
8
receptor gene
8
snail bithynia
8
bithynia tentaculata
8
gene
7
identification estrogen
4
gene natural
4
natural freshwater
4
freshwater snail
4

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.

Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!