Pharmacological benefit of I(1)-imidazoline receptors activation and nuclear factor kappa-B (NF-κB) modulation in experimental Huntington's disease.

Brain Res Bull

Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India. Electronic address:

Published: March 2014

AI Article Synopsis

  • Huntington's disease (HD) is a neurodegenerative disorder leading to motor dysfunction, emotional disturbances, and cognitive decline, necessitating research for new treatments.
  • The study evaluates the effects of moxonidine (targeting I1-imidazoline receptors) and NDDCT (modulating NF-κB) on a rat model of HD induced by 3-nitropropionic acid (3-NPA), which caused neurological and biochemical changes reflecting HD symptoms.
  • Results showed that both treatments significantly improved motor function, anxiety, and cognitive deficits caused by 3-NPA, suggesting their potential as therapeutic agents for HD management.

Article Abstract

Huntington's disease (HD), a neurodegenerative disorder, is characterized by progressive motor dysfunction, emotional disturbances, dementia, weight loss and anxiety. The tremendous amount of research work is required to identify new pharmacological agents of therapeutic utility to combat this condition. This study investigates the effect of selective modulator of I1-imidazoline receptor (moxonidine) as well as nuclear factor kappa-B (NF-κB) (natrium diethyl dithio carbamate trihydrate-NDDCT) on 3-nitropropionic acid (3-NPA) induced experimental HD condition. 3-NPA was used to induce mitochondrial damage and associated HD symptoms in rats. Anxiety was assessed using Elevated plus maze-EPM and learning-memory was assessed using EPM and Morris water maze-MWM. Different biochemical estimations were used to assess brain striatum oxidative stress (lipid peroxide, superoxide dismutase and catalase), nitric oxide levels (nitrite/nitrate), cholinergic activity (brain striatum acetyl cholinesterase activity), and mitochondrial enzyme complex (I, II and IV) activities. 3-NPA has induced anxiety, impaired learning-memory with a reduction in body weight, locomotor activity, grip strength. It has increased brain striatum acetylcholinesterase-AChE activity, oxidative stress (lipid peroxide, nitrite/nitrate, superoxide dismutase and catalase) and impaired mitochondrial complex enzyme (I, II and IV) activities. Tetrabenazine-TBZ (monoamine storage inhibitor) was used as positive control. Treatment with moxonidine, NDDCT and TBZ significantly attenuated 3-NPA induced reduction in body weight, locomotor activity, grip strength, anxiety as well as impaired learning and memory. Administration of these agents attenuated 3-NPA induced various biochemical impairments. Therefore, modulation of I1-imidazoline receptor as well as NF-κB may be considered as potential pharmacological agents for the management of 3-NPA induced HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2014.02.007DOI Listing

Publication Analysis

Top Keywords

3-npa induced
20
brain striatum
12
nuclear factor
8
factor kappa-b
8
kappa-b nf-κb
8
huntington's disease
8
pharmacological agents
8
i1-imidazoline receptor
8
oxidative stress
8
stress lipid
8

Similar Publications

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Abnormal apoptosis of ovarian cells caused by oxidative stress is an important cause of premature ovarian failure (POF). Previous studies revealed that proanthocyanidins (PCs) are powerful natural antioxidants that can safely prevent oxidative damage in humans. However, the protective effect and mechanism of PCs on ovarian function during the course of POF remain unknown.

View Article and Find Full Text PDF

Neurodegenerative disorders like Huntington's disease (HD) are a major threat to human health, with severe gait abnormalities and pathological changes (oxidative stress, neuroinflammation, and apoptosis) playing important roles in their development. The effects of artemisinin (ART) alone and in combination with the ERK antagonist PD98059 against 3-nitropropionic acid (3-NPA)-induced cell death and oxidative stress in SH-SY5Y cells were determined using the MTT and DCFH-DA assays, as well as RT-qPCR assays. In vivo, possible neuroprotective effects of ART (10, 20, and 40 mg/kg i.

View Article and Find Full Text PDF

Background: Follicular cysts contribute significantly to reproductive loss in high-yield dairy cows. This results from the death of follicular granulosa cells (GCs) caused by oxidative stress. Quercetin is known to have significant antioxidant and anti-apoptotic effects.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!