The circumsporozoite protein (CSP), the most abundant surface antigen of sporozoites, has been extensively studied in different expression platforms as a vaccine candidate. Clinical trials have shown the necessity of broad and highly avid humoral immune responses together with high numbers of CSP-specific TCD4+ and TCD8+ cells, especially those producing IFN-γ, to induce protection. To this aim, we designed two distinct recombinant immunogens based on previously-described antigenic fragments of Plasmodium vivax CSP (PvCSP) to be used as vaccine candidates. The first one is a virus-like particle (VLP) comprising the repeat region of PvCSP (B and TCD4+ epitopes) within the loop of the hepatitis B virus core antigen (HBcAgPvCSP). The second one is a PvCSP multi-epitope polypeptide, rPvCSP-ME, designed based on antigenic regions of PvCSP recognized by lymphocytes of individuals from endemic areas. Mice immunized with 2 doses of these proteins, administered individually or combined and formulated in Montanide ISA 720 adjuvant, were able to induce strong effector and memory humoral responses with IgG titers ranging from 10(4) to 10(5) and avidity indexes toward full-length PvCSP reaching up to 66%, even 3 months after the last immunization. Furthermore, balanced Th1/Th2 responses were generated, as determined by titers of IgG subclasses and further confirmed by ELISPOT analyses, which detected that these vaccination protocols were able to elicit long-term IFN-γ and IL-2-secreting memory T-cells. Overall, these results show that our vaccine candidates generate, in mice, immune responses against regions within PvCSP that have been associated with protection against malaria in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2014.02.053 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!