Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells.

Surgery

Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC. Electronic address:

Published: April 2014

Background: The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the perianal region of athymic rats.

Methods: Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. After maturation of the bioengineered constructs in culture, they were implanted operatively into the perianal region of athymic rats. Platelet-derived growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks postimplantation.

Results: Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. At harvest, implanted constructs were adherent to the perirectal rat tissue and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded in vitro in a tissue chamber to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks.

Conclusion: Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017655PMC
http://dx.doi.org/10.1016/j.surg.2013.12.023DOI Listing

Publication Analysis

Top Keywords

human ias
12
implanted constructs
12
ias
10
constructs
9
implantation bioengineered
8
internal anal
8
anal sphincter
8
intrinsically innervated
8
innervated human
8
progenitor cells
8

Similar Publications

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Patients with intracranial aneurysm (IA) are at high risk of cerebral hemorrhage, which is associated with high mortality. Craniotomy or interventional endovascular coiling are common treatment methods in clinical practice, depending on the patient's condition. However, the recurrence rate of IA after either method remains unclear.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

Enhancing biosensing of trace tau protein in clinical samples via emergence macroscopic directed aggregation.

Biosens Bioelectron

January 2025

Synthetic Biology Research Center, Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address:

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that poses a significant risk to human health and well-being. The high cost and invasiveness of neuroimaging and cerebrospinal fluid (CSF) analysis underscores the necessity for accessible early screening via blood samples. In this study, we developed an ultrasound-based strategy for emergent macroscopic that enhances the acoustic response enrichment of specific proteins by introducing functionalized microspheres.

View Article and Find Full Text PDF

This report details a case study of a non-smoking 33-year-old female nurse who developed occupational asthma as an Inside Attendant (IA) in a hyperbaric chamber. The report analyzes the nurse's medical history, working environment, and potential causes. After beginning work in the hyperbaric chamber, an IA experienced respiratory symptoms, including coughing, wheezing, and fatigue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!