Electrophoretically pure human interleukin-1 (IL-1) beta was found to stimulate human fibroblasts in a monolayer culture to elaborate colony-stimulating activity (CSA). Supernatant fluids from cultures induced with increasing concentrations of IL-1 were found to stimulate colony formation of myeloid (CFU-GM), erythroid (BFU-E), and multipotent (CFU-GEMM) progenitor cells in a dose-dependent fashion. The effect on mixed colony formation, however, was less than on CFU-GM and BFU-E growth. Similar to IL-1, the synthetical double-stranded RNA poly(rI).poly(rC) also stimulated release of CSA by fibroblasts. The kinetics of IL-1- and poly(rI).poly(rC)-induced CSA release were found to be different, in that poly(rI).poly(rC)-induced CSA production occurred more slowly. Anti-IL-1 antiserum was able to completely neutralize the IL-1-induced CSA release, but had no effect on poly(rI).poly(rC)-induced CSF production, suggesting that the latter effect was mediated by other mechanisms than IL-1 in supernatant. By the use of specific immunologic assays, G-CSF, M-CSF, and GM-CSF could be identified in media conditioned by fibroblasts treated with IL-1 or poly(rI).poly(rC). Poly(rI).poly(rC) appeared to be a better inducer for M-CSF than IL-1.
Download full-text PDF |
Source |
---|
iScience
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.
View Article and Find Full Text PDFGenome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!