The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3) eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.061802 | DOI Listing |
Phys Rev Lett
December 2024
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01062 Dresden, Germany.
Stable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6 keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.
View Article and Find Full Text PDFCommun Phys
December 2024
C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 USA.
Solid-state detectors with a low energy threshold have several applications, including searches of non-relativistic halo dark-matter particles with sub-GeV masses. When searching for relativistic, beyond-the-Standard-Model particles with enhanced cross sections for small energy transfers, a small detector with a low energy threshold may have better sensitivity than a larger detector with a higher energy threshold. In this paper, we calculate the low-energy ionization spectrum from high-velocity particles scattering in a dielectric material.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Boltzmannstr. 8, 85748 Garching, Germany.
A dense neutrino gas exhibiting angular crossings in the electron lepton number is unstable and develops fast flavor conversions. Instead of assuming an unstable configuration from the onset, we imagine that the system is externally driven toward instability. We use the simplest model of two neutrino beams initially of different flavor that either suddenly appear or one or both slowly build up.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2024
The projected sensitivity of the effective electron neutrino-mass measurement with the KATRIN experiment is below 0.3 eV (90 % CL) after 5 years of data acquisition. The sensitivity is affected by the increased rate of the background electrons from KATRIN's main spectrometer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Physics and Illinois Center for Advanced Studies of the Universe, University of Illinois, Urbana, IL 61801.
We ask the question of how angular momentum is conserved in electroweak interaction processes. To introduce the problem with a minimum of mathematics, we first raise the same issue in elastic scattering of a circularly polarized photon by an atom, where the scattered photon has a different spin direction than the original photon, and note its presence in scattering of a fully relativistic spin-1/2 particle by a central potential. We then consider inverse beta decay in which an electron is emitted following the capture of a neutrino on a nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!