Unidirectional lasing emerging from frozen light in nonreciprocal cavities.

Phys Rev Lett

Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA.

Published: January 2014

We introduce a class of unidirectional lasing modes associated with the frozen mode regime of nonreciprocal slow-wave structures. Such asymmetric modes can only exist in cavities with broken time-reversal and space inversion symmetries. Their lasing frequency coincides with a spectral stationary inflection point of the underlying passive structure and is virtually independent of its size. These unidirectional lasers can be indispensable components of photonic integrated circuitry.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.112.043904DOI Listing

Publication Analysis

Top Keywords

unidirectional lasing
8
lasing emerging
4
emerging frozen
4
frozen light
4
light nonreciprocal
4
nonreciprocal cavities
4
cavities introduce
4
introduce class
4
class unidirectional
4
lasing modes
4

Similar Publications

Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.

View Article and Find Full Text PDF

Million-Q free space meta-optical resonator at near-visible wavelengths.

Nat Commun

November 2024

Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.

Article Synopsis
  • The study focuses on creating high-quality optical resonators, essential for technologies like metrology and quantum optics, particularly aiming to achieve extreme temporal coherence at visible wavelengths.* -
  • Researchers developed a new type of etch-free metasurface that minimizes defects, successfully demonstrating an impressive ultrahigh-Q resonance in free space, along with a novel spectroscopy technique for detailed analysis.* -
  • By integrating a monolayer material, the team achieved highly unidirectional exciton emission without a power density threshold, showcasing potential applications in optical sensing and controlling quantum light sources.*
View Article and Find Full Text PDF

Bidirectional feedback by fiber Bragg grating arrays (FBGAs) reduced the loss of the cavity and increased stimulated Brillouin scattering (SBS) gain by bi-directional Stokes wave through FBGA associated Rayleigh feedback of the pump wave. As a result, the Q value of the Brillouin random fiber laser (BRFL) increased significantly, which leads to narrow linewidth. This is different from the ring configuration with unidirectional SBS gain versus dual SBS gain of the same fiber length.

View Article and Find Full Text PDF

Shape-Dependent Optical Waveguides and Low-Threshold Lasers from Polymorphic Two-Dimensional Organic Single Crystals.

J Phys Chem Lett

May 2024

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.

Organic single crystals (OSCs) with uniform morphologies and highly ordered molecular aggregations are promising for high-performance optoelectronic devices, such as organic solid-state lasers (OSSLs), organic light-emitting transistors (OLETs), and organic light-emitting diodes (OLEDs). However, manipulating OSC morphologies and aggregation is challenging. In this study, we synthesized two-dimensional (2D) OSCs of 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) in hexagonal and parallelogram microplate (H-MP and P-MP) forms.

View Article and Find Full Text PDF

Unidirectional Lasing from Mirror-Coupled Dielectric Lattices.

Nano Lett

March 2024

Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

This paper reports how a hybrid system composed of transparent dielectric lattices over a metal mirror can produce high-quality lattice resonances for unidirectional lasing. The enhanced electromagnetic fields are concentrated in the cladding of the periodic dielectric structures and away from the metal. Based on a mirror-image model, we reveal that such high-quality lattice resonances are governed by bound states in the continuum resulting from destructive interference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!