Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present extensive numerical simulations of a generalized XY model with nematic-like terms recently proposed by Poderoso et al. [ Phys. Rev. Lett. 106 067202 (2011)]. Using finite size scaling and focusing on the q=3 case, we locate the transitions between the paramagnetic (P), the nematic-like (N), and the ferromagnetic (F) phases. The results are compared with the recently derived lower bounds for the P-N and P-F transitions. While the P-N transition is found to be very close to the lower bound, the P-F transition occurs significantly above the bound. Finally, the transition between the nematic-like and the ferromagnetic phases is found to belong to the three-states Potts universality class.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.89.012126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!