This work compares three descriptions of the unpaired electrons distribution in conjugated monoradical and diradical hydrocarbons involving one or two methylene groups attached to an aromatic skeleton. The first one is the simple Hückel topological Hamiltonian, the singly occupied molecular orbitals (SOMO) of which may be analytically obtained. The second one is the restricted open-shell self-consistent field (ROHF-SCF) method. The so-obtained distribution of the unpaired electrons on the skeleton appears deeply different from that predicted by the Hückel Hamiltonian, being more strongly localized on the external methylene groups. More elaborate methods treat all π electrons in the π valence molecular orbitals (MOs) through a full valence π complete active space self-consistent field (CASSCF) treatment. The distributions of the unpaired electrons (given by the natural MOs of occupation number close to 1) are surprisingly similar to those predicted by the Hückel model. The spin density distributions, including spin polarization effects, can be improved by further configuration interactions involving one hole-one particle excitations and compared with the experimental hyperfine coupling constant ratios. This comparison confirms the lack of delocalization of the magnetic orbitals defined from the self-consistent single-reference treatment. We show that, provided correct SOMO are used, a single excitation CI performed on top of a single reference gives accurate spin densities. Finally, a rationalization of the role of the dynamic correlation in correcting the excessive localization of the unpaired electron(s) at the ROHF level on the exocyclic methylene group(s) is given, attributing it to the dynamic charge polarization of the charge transfer configurations between methylene and the aromatic frame.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp4120892DOI Listing

Publication Analysis

Top Keywords

unpaired electrons
16
methylene groups
12
singly occupied
8
molecular orbitals
8
self-consistent field
8
predicted hückel
8
electrons
5
occupied mos
4
mos mono-
4
mono- diradical
4

Similar Publications

Free radicals, characterized by the presence of unpaired electrons, are highly reactive species that play a significant role in human health. These molecules can be generated through various endogenous processes, such as mitochondrial respiration and immune cell activation, as well as exogenous sources, including radiation, pollution, and smoking. While free radicals are essential for certain physiological processes, such as cell signaling and immune defense, their overproduction can disrupt the delicate balance between oxidants and antioxidants, leading to oxidative stress.

View Article and Find Full Text PDF

Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.

View Article and Find Full Text PDF

The Influence of Posterior Class II Composite Restoration Location and Techniques on Marginal Sealing.

Dent J (Basel)

January 2025

Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.

: The success of treatment and prevention for secondary caries hinges significantly on the techniques employed in Class II composite restoration. Additionally, the location of the restored tooth within the oral cavity has emerged as a potential factor determining the quality of the restoration. A comprehensive understanding of these interrelated variables is crucial for advancing the efficacy and durability of dental composite restorations.

View Article and Find Full Text PDF

Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) and closely related compounds with varying isoprenoid tail lengths (CoQ, = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ radical anion ([M], / 862.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!