Early-stage romantic love involves reorganization of neurohormonal systems and behavioral patterns marked by mutual influences between the partners' physiology and behavior. Guided by the biobehavioral synchrony conceptual frame, we tested bidirectional influences between the partners' hormones and conflict behavior at the initiation of romantic love. Participants included 120 new lovers (60 couples) and 40 singles. Plasma levels of five affiliation and stress-related hormones were assessed: oxytocin (OT), prolactin (PRL), testosterone (T), cortisol (CT), and dehydroepiandrosterone sulfate (DHEAS). Couples were observed in conflict interaction coded for empathy and hostility. CT and DHEAS showed direct actor effects: higher CT and DHEAS predicted greater hostility. OT showed direct partner effects: individuals whose partners had higher OT showed greater empathy. T and CT showed combined actor-partner effects. High T predicted greater hostility only when partner also had high T, but lower hostility when partner had low T. Similarly, CT predicted low empathy only in the context of high partner's CT. Mediational analysis indicated that combined high CT in both partners was associated with relationship breakup as mediated by decrease in empathy. Findings demonstrate the mutual influences between hormones and behavior within an attachment bond and underscore the dynamic, co-regulated, and systemic nature of pair-bond formation in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17470919.2014.893925 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!