Criticality and quenched disorder: Harris criterion versus rare regions.

Phys Rev Lett

Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos, São Paulo 13560-970, Brazil.

Published: February 2014

We employ scaling arguments and optimal fluctuation theory to establish a general relation between quantum Griffiths singularities and the Harris criterion for quantum phase transitions in disordered systems. If a clean critical point violates the Harris criterion, it is destabilized by weak disorder. At the same time, the Griffiths dynamical exponent z' diverges upon approaching the transition, suggesting unconventional critical behavior. In contrast, if the Harris criterion is fulfilled, power-law Griffiths singularities can coexist with clean critical behavior, but z' saturates at a finite value. We present applications of our theory to a variety of systems including quantum spin chains, classical reaction-diffusion systems and metallic magnets, and we discuss modifications for transitions above the upper critical dimension. Based on these results we propose a unified classification of phase transitions in disordered systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.112.075702DOI Listing

Publication Analysis

Top Keywords

harris criterion
16
griffiths singularities
8
phase transitions
8
transitions disordered
8
disordered systems
8
clean critical
8
critical behavior
8
criticality quenched
4
quenched disorder
4
harris
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!