The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

Download full-text PDF

Source

Publication Analysis

Top Keywords

myriophyllum aquaticum
8
wastewater
5
tolerance myriophyllum
4
aquaticum
4
aquaticum exposure
4
exposure industrial
4
industrial wastewater
4
wastewater pretreatment
4
pretreatment electrocoagulation
4
electrocoagulation efficiency
4

Similar Publications

Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.

View Article and Find Full Text PDF

Promote or inhibit? Transcriptomic and metabonomic insights into the effects of antibiotics on nitrogen uptake and metabolism in Myriophyllum aquaticum.

J Hazard Mater

November 2024

Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 100096, China. Electronic address:

Phytoremediation is an effective nitrogen removal method to alleviate eutrophication. However, the coexistence of antibiotics may inhibit nitrogen removal by aquatic macrophytes, and the underlying mechanisms remain unclear. Here, we systematically investigated the effects of three antibiotics (norfloxacin, NOR; sulfamethoxazole, SMX; and oxytetracycline, OTC) at environmental concentrations (1 μg/L and 1 mg/L) on ammonia (NH-N) and nitrate (NO-N) removal by the aquatic macrophyte Myriophyllum aquaticum.

View Article and Find Full Text PDF

A low-impact nature-based solution for reducing aquatic microplastics from freshwater ecosystems.

Water Res

January 2025

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, 69622, Villeurbanne, France.

Effective nature-based solutions (NBS) and strategies for freshwater microplastic (MP) pollution are beneficial for reducing ecological and human health risks. This study proposed an innovative NBS for the in-situ retention of aquatic MPs. By evaluating the tolerance and MP retention efficiency of different submerged macrophytes, Myriophyllum aquaticum was identified as a well-suited system for optimization as NBS for operational MP retainment practice.

View Article and Find Full Text PDF

Aquatic macrophytes mitigate the conflict between nitrogen removal and nitrous oxide emissions during tailwater treatments.

J Environ Manage

November 2024

Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China. Electronic address:

Tailwater from wastewater treatment plants (WWTP) usually reduces the nitrogen (N) removal efficiency while simultaneously elevates nitrous oxide (NO) emissions due to the low carbon-nitrogen (C/N) ratio. Conflicts between N removal and NO emissions require mitigation by selecting appropriate aquatic plants for tailwater treatment. In this study, a simulated tailwater mesocosm was established using three aquatic plants including Eichhornia crassipes, Myriophyllum aquaticum and Pistia stratiotes.

View Article and Find Full Text PDF

The dissolved organic matter (DOM) with high mobility and reactivity plays a crucial role in soil. In this study, the characteristics and phytotoxicity of DOM released from the hydrochars prepared from different feedstocks (cow manure, corn stalk and Myriophyllum aquaticum) under three hydrothermal carbonization (HTC) temperatures (180, 200 and 220°C) were evaluated. The results showed that the hydrochars had high dissolved organic carbon content (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!