[Dendritic projections from meridian-related motoneurons to sympathic preganglion neurons in the spinal cord of rats].

Zhen Ci Yan Jiu

Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing , 100005 , China.

Published: December 2013

Objective: Previous studies indicated a close involvement of reflex activities of motoneurons in the spinal cord in the mechanism of meridian phenomena. The present study was designed to investigate the dendrite projections of meridian-related motoneurons among the motoneurons and sympathetic preganglionic neurons in the spinal cord.

Methods: A total of 41 Sprague-Dawley rats were used in the present study. Cholera toxin B-subunit conjugated horseradish peroxidase (CB-HRP) containing 1.0% HRP was respectively injected to acupoint "Chengman" (ST 20), "Liangmen" (ST 21), "Guanmen" (ST 22), "Taiyi" (ST 23), "Huaroumen" (ST 24), "Tianshu" (ST 25) and "Wailing" (ST 26) of the Stomach Meridian, and "Ganshu" (BL 18), "Danshu" (BL 19), "Pishu" (BL 20), "Weishu" (BL 21) and "Sanjiaoshu" (BL 22) of the Bladder Meridian, and "Daimai" (GB 26), "Wushu" (GB 27), "Weidao" (GB 28), "Juliao" (GB 29), "Huantiao" (GB 30), "Fengshi" (GB 31), "Zhongdu" (GB 32), "Xiyangguan" (GB 33) and "Yanglingquan" (GB 34) of the Gallbladder Meridian (for labeling preganglionic neurons), and the celiac ganglion and superior mesenteric ganglion for labeling sympathetic preganglionic neurons. Three days after injection, the animals anesthetized were transcardia-cally perfused with 1.5% paraformaldehyde, the spinal cord was removed to be fixed routinely and then cut into sections for observing the labeled cells under microscope.

Results: In the ipsilateral ventral horn of the spinal cord, the motoneurons retrogradely labeled by CB-HRP formed dendritic projections oriented only to those motoneurons innervating the same meridian. In the longitudinal sections of spinal cord, the labeled motoneurons formed a bead-like column with a prominent network of longitudinal dendrites connecting the motoneurons innervating acupoints from the same meridian. In the transverse sections of spinal cord, two groups of dendrites from the labeled motoneurons projected to the identified sympathetic preganglionic regions: one group extended dorsolateraly to the intermediolateral gray, another group extended intermediolateraly toward the central canal. In rats with injection of CB-HRP into both acupoint regions and ipsilateral celiac ganglion, the dendrites originated from the labeled motoneurons projected directly to the labeled sympathetic preganglionic neurons.

Conclusion: Each of the ST, BL and GB meridians is innervated by a specific group of motoneurons in the spinal cord. The motoneurons form a column with distinct border in the ventral horn of spinal cord, and the dendritic projections from the motoneurons oriented only to those innervating the same meridian. The dendrites from the meridian-related motoneurons can specifically project to the sympathetic preganglionic neurons at the thoracolumbar level.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spinal cord
32
sympathetic preganglionic
20
preganglionic neurons
16
motoneurons
14
meridian-related motoneurons
12
labeled motoneurons
12
spinal
9
projections meridian-related
8
neurons spinal
8
cord
8

Similar Publications

Sex Differences in Rates of Spinal Cord Stimulation Therapy and Spinal Cord Stimulator Explants: A Propensity-Score Matched Analysis.

Neuromodulation

January 2025

MetroHealth Rehabilitation Institute, Metrohealth System, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

Objectives: Spinal cord stimulation (SCS) is a therapeutic option for those with chronic pain due to persistent spinal pain syndrome (PSPS). Current literature suggests a higher rate of SCS explant in female patients, but evidence regarding sex differences in the rates of receiving SCS therapy is limited. We do not know whether there is a disparity between female and male patients who receive SCS therapy.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

(L.) Urban (family Apiaceae) () is a traditional botanical medicine used in aging and dementia. Water extracts of (CAW) have been used to treat neuropsychiatric symptoms in related animal models and are associated with increases in antioxidant response element (ARE) genes and improvements in mitochondrial respiratory function and neuronal health.

View Article and Find Full Text PDF

Background: Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!