Bacterial ice crystal controlling proteins.

Scientifica (Cairo)

Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.

Published: June 2014

Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918373PMC
http://dx.doi.org/10.1155/2014/976895DOI Listing

Publication Analysis

Top Keywords

ice crystal
16
crystal controlling
12
controlling proteins
12
ice nucleation
12
nucleation proteins
12
ice
11
proteins
10
proteins ice
8
freezing tolerance
8
antifreeze ice
8

Similar Publications

Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Scale and the Action Mechanism.

J Agric Food Chem

January 2025

College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.

This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.

View Article and Find Full Text PDF

Background: Crystal methamphetamine abuse is a growing concern due to its significant adverse effects on various organ systems.

Case Description: This report presents a rare case of pneumomediastinum, pneumoretroperitoneum and subcutaneous emphysema resulting from crystal methamphetamine abuse. The exact mechanism linking methamphetamine abuse to pneumomediastinum remains ambiguous.

View Article and Find Full Text PDF

An Alternative Hypothesis on Enhanced Deep Supercooling of Water: Nucleator Inhibition via Bicarbonate Adsorption.

J Phys Chem Lett

January 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France.

Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling.

View Article and Find Full Text PDF

To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.

View Article and Find Full Text PDF

Fabrication of nanocellulose-based high-mechanical and super-hydrophobic xerogels for speedy oil absorbents.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose-based porous materials are promising for various fields and preferred for sustainable development. However, the low mechanical properties and high hydrophilicity of cellulose-based xerogels had a direct influence on their application in oil absorption. To address the challenge, an environmentally friendly and economical method for synthesizing MTMS/C0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!