The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918732PMC
http://dx.doi.org/10.1155/2014/917348DOI Listing

Publication Analysis

Top Keywords

sensitive analytical
12
analytical methods
12
vermicompost
8
agricultural productivity
8
toxic metals
8
vermicompost scarce
8
overview environmental
4
environmental applicability
4
applicability vermicompost
4
vermicompost wastewater
4

Similar Publications

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.

View Article and Find Full Text PDF

Femtomolar hydrogen sulfide detection via hybrid small-molecule nano-arrays.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.

Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.

View Article and Find Full Text PDF

Given that reproductive physiology is highly sensitive to thermal stress, there is increasing concern about the effects of climate change on animal fertility. Even a slight reduction in fertility can have consequences for population growth and survival, so it is critical to better understand and predict the potential effects of climate change on reproductive traits. We synthesised 1894 effect sizes across 276 studies on 241 species to examine thermal effects on fertility in aquatic animals.

View Article and Find Full Text PDF

The real-time detection of gaseous HO and its typical isotopic molecules, e.g., HO, DO, HDO, and HTO, is highly desirable in many fundamental scientific studies and practical monitoring, such as mechanistic studies of HO-involved chemical reactions and radiation risk warning of abnormal HTO emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!