Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989701 | PMC |
http://dx.doi.org/10.1152/ajpgi.00316.2013 | DOI Listing |
FASEB J
December 2024
Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.
Flavan-3-ols (FL) are poorly bioavailable astringent polyphenols that induce hyperactivation of the sympathetic nervous system. The aim of this study was to investigate the effects of repeated oral administration of FL on mice hindlimb skeletal muscle using immunohistochemical techniques. C57BL/6J male mice were orally administered 50 mg/kg of FL for a period of 2 weeks, and bromideoxyuridine (BrdU) was administered intraperitoneally 3 days prior to the dissection.
View Article and Find Full Text PDFSkeletal muscles are predominantly composed of long, multinucleated muscle fibers, classified according to their metabolic and contractile phenotype. The determination of fiber types is influenced by various factors (e.g.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
The in utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and postweaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n = 7) at a dose of 2.
View Article and Find Full Text PDFFront Vet Sci
October 2024
Jiangxi Key Laboratory of Animal Nutrition, Nanchang, Jiangxi, China.
Background: A recent study has shown that niacin supplementation induces the conversion of type II to type I muscle fibres, thereby promoting a phenotypic shift in oxidative metabolism in porcine skeletal muscle. These effects may be mediated by modulation of the AMPK1/SIRT1 pathway, which activates peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), a key regulator of fibre conversion, thereby promoting skeletal muscle mitochondrial biogenesis and myofibre conversion. In this study, we explored how niacin (NA) supplementation impacts the quality of meat and the characteristics of muscle fibers in Taihe Black-bone Silky Fowls (TBsf) exposed to heat conditions.
View Article and Find Full Text PDFJ Cell Sci
September 2024
Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland.
Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!