Analysis of proteins showing differential changes during ATP oscillations in chondrogenesis.

Cell Biochem Funct

Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi, South Korea.

Published: July 2014

Prechondrogenic condensation is a critical step for skeletal pattern formation. Our previous study showed that ATP oscillations play an essential role in prechondrogenic condensation because they induce oscillatory secretion. However, the molecular mechanisms that underlie ATP oscillations remain poorly understood. We examined how differential changes in proteins are implicated in ATP oscillations during chondrogenesis by using liquid chromatography/mass spectrometry. Our analysis showed that a number of proteins involved in ATP synthesis/consumption, catabolic/anabolic processes, actin dynamics, cell migration and adhesion were detected at either the peak or the trough of ATP oscillations, which implies that these proteins have oscillatory expression patterns that are coupled to ATP oscillations. On the basis of the results, we suggest that (1) the oscillatory expression of proteins involved in ATP synthesis/consumption and catabolic/anabolic processes can contribute to the generation or maintenance of ATP oscillations and that (2) the oscillatory expression of proteins involved in actin dynamics, cell migration and adhesion plays key roles in prechondrogenic condensation by inducing collective adhesion and migration in cooperation with ATP oscillations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.3033DOI Listing

Publication Analysis

Top Keywords

atp oscillations
32
prechondrogenic condensation
12
proteins involved
12
oscillatory expression
12
atp
10
differential changes
8
oscillations
8
oscillations chondrogenesis
8
involved atp
8
atp synthesis/consumption
8

Similar Publications

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.

View Article and Find Full Text PDF

Uncovering the Differed Susceptibility of ( and ) to Fungicide Phenamacril: From Computational and Experimental Perspectives.

J Agric Food Chem

January 2025

Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.

and are two subtypes of (Fo), a pathogenic filamentous fungus. Phenamacril (PHA), a -specific fungicide that targets myosin I, exhibits significant hyphal growth inhibition in but shows weak resistance in , despite only two amino acid differences in the PHA-binding pocket of myosin I. In this study, we aim to elucidate the molecular basis for the differential sensitivity of myosin I variants (FoMyoI and FoMyoI) to phenamacril through computational methods and biochemical validation.

View Article and Find Full Text PDF

In addition to the well-known monomeric and polymeric forms of actin there is another unique thermodynamically stable state of this protein, called "inactivated actin" (I-actin). I-actin is formed at moderate concentration of a denaturant, release of Ca ions and/or ATP, or after heating. This state is a monodisperse associate and it has the same spectral characteristics regardless of the method of preparation.

View Article and Find Full Text PDF

Role of ryanodine receptor cooperativity in Ca-wave-mediated triggered activity in cardiomyocytes.

J Physiol

December 2024

Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA.

Ca waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca waves using physiologically realistic models has remained a major challenge. Existing models with low Ca sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca transient amplitude incompatible with the experimental observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!