Thyroid diseases, such as autoimmune disease and benign and malignant nodules, are more prevalent in women than in men, but the mechanisms involved in this sex difference is still poorly defined. H₂O₂ is produced at high levels in the thyroid gland and regulates parameters such as cell proliferation, migration, survival, and death; an imbalance in the cellular oxidant-antioxidant system in the thyroid may contribute to the greater incidence of thyroid disease among women. Recently, we demonstrated the existence of a sexual dimorphism in the thyrocyte redox balance, characterized by higher H₂O₂ production, due to higher NOX4 and Poldip2 expression, and weakened enzymatic antioxidant defense in the thyroid of adult female rats compared with male rats. In addition, 17β-estradiol administration increased NOX4 mRNA expression and H₂O₂ production in thyroid PCCL3 cells. In this review, we discuss the possible involvement of oxidative stress in estrogen-related thyroid pathophysiology. Our current hypothesis suggests that a redox imbalance elicited by estrogen could be involved in the sex differences found in the prevalence of thyroid dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JOE-13-0588 | DOI Listing |
Thyroid
January 2025
Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
In the era of molecular testing, thyroid nodules with indeterminate cytology are increasingly being managed nonoperatively. The false-negative rates of these molecular tests, and therefore missed malignancies, are not well defined in real-world clinical practice. This retrospective study of patients undergoing fine needle aspiration (FNA) biopsy at our health system between November 2017 and March 2022 included nodules with The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) III and IV cytology and negative, currently negative, or negative but limited ThyroSeq version 3 (TSv3) results.
View Article and Find Full Text PDFMenopause
January 2025
From the Department of Obstetrics, Gynecology and Reproduction, Dexeus University Hospital, Barcelona, Spain.
Objective: To examine the association between serum thyroid-stimulating hormone (TSH) levels with handgrip strength (HGS) and dynapenia in euthyroid postmenopausal women.
Methods: This was an exploratory cross-sectional study among 385 participants from the Department of Obstetrics, Gynecology, and Reproduction of the Dexeus Women's University Hospital, Barcelona, Spain. Age, age at menopause, adiposity, alcohol consumption, body mass index (BMI), and smoking status were recorded.
Eur Thyroid J
January 2025
J Knauf, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, United States.
The development of mouse models for thyroid cancer has significantly advanced over the years, enhancing our understanding of thyroid tumorigenesis, molecular pathways, and treatment responses. The earliest mouse models of thyroid cancer relied on hormone, radiation, or chemical carcinogenesis to induce tumors. However, as our understanding of the genetic alterations driving thyroid cancer has expanded, more sophisticated genetic engineering techniques have been employed to create models with thyroid-specific expression of these driver mutations.
View Article and Find Full Text PDFFASEB J
January 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
With the emergence of high-quality sequencing technologies, further research on transcriptomes has become possible. Circular RNA (circRNA), a novel type of endogenous RNA molecule with a covalently closed circular structure through "back-splicing," is reported to be widely present in eukaryotic cells and participates mainly in regulating gene and protein expression in various ways. It is becoming a research hotspot in the non-coding RNA field.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!