Abnormal levels and hyperphosphorylation of tau protein have been proposed as the underlying cause of a group of neurodegenerative disorders collectively known as 'tauopathies'. The detrimental consequence is the loss of affinity between this protein and the microtubules, increased production of fibrillary aggregates, and the accumulation of insoluble intracellular neurofibrillary tangles. A similar phenotype can be observed in various preclinical models, which have been generated to study the role of tau protein in neurodegenerative disorders. In this study, we have analyzed the brain metabolic activity in an animal model of tauopathy (tauVLW transgenic mice), which has been previously reported to mimic some of the phenotypic features of these disorders. By using a non-invasive technique, positron emission tomography (PET), a longitudinal non-clinical follow up study was carried out during most of the lifespan of these transgenic mice, from the youth to the senescence stages. The results obtained point out to an aging-dependent decrease in 18F-fluoro-deoxyglucose (FDG) uptake in the cerebral areas analyzed, which was already significant at the adult age, i.e., 11 months, and became much more prominent in the oldest animals (19 months old). This observation correlates well with the histopathological observation of neurodegeneration in brain areas where there is overexpression of tau protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-132276 | DOI Listing |
Chem Sci
January 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Mann School of Pharmacy and Pharmaceutical Sciences, 1985 Zonal Ave, Los Angeles, CA 90089-9121, USA.
Natural products are ligands and in vitro inhibitors of Alzheimer's disease (AD) tau. Dihydromyricetin (DHM) bears chemical similarity to known natural product tau inhibitors. Despite having signature polyphenolic character, DHM is ostensibly hydrophobic owing to intermolecular hydrogen bonds that shield hydrophilic phenols.
View Article and Find Full Text PDFJ Neurol
January 2025
Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Villaroel 170, 08036, Barcelona, Spain.
Plasma tau phosphorylated at threonine 181 (p-tau181) and 217 (p-tau217) have demonstrated high accuracy for Alzheimer's disease (AD) diagnosis, defined by CSF/PET amyloid beta (Aβ) positivity, but most studies have been performed in research cohorts, limiting their generalizability. We studied plasma p-tau217 and p-tau181 for CSF Aβ status discrimination in a cohort of consecutive patients attending an academic memory clinic in Spain (July 2019-June 2024). All patients had CSF AD biomarkers performed as part of their routine clinical assessment.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France. Electronic address:
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!