Vesicle transport occurs in the cytosol through COPI, COPII and a clathrin coated vesicle system for transport of lipids and proteins to different subcellular compartments. All three systems consist of several different protein components to maintain a functional transport. In chloroplasts photosynthesis takes place in thylakoids. Thylakoids contain a large amount of lipids and proteins but none of these components are produced there. Transport of lipids occurs from the envelope membrane where they are produced and through the aqueous stroma before being directed to the thylakoids. Nuclear encoded proteins use distinct pathways for entering thylakoids after import into chloroplasts. Transport of lipids through stroma requires either lipid transfer proteins, association between the envelope and the thylakoid membrane, or a vesicle transport system similar to the cytosolic one. No evidence exists for lipid transfer proteins in chloroplasts, nor for a consistent association between the envelope and the thylakoid membrane. However, vesicle transport has support from e.g., biochemical and genetics data as well as transelectron microscopy data. Moreover, a recent bioinformatics study revealed putatively COPII related proteins to be chloroplast localized in Arabidopsis and thus function in vesicle transport in chloroplasts. Here we present gene expression profiles of these putatively COPII related chloroplast localized proteins using Genevestigator (https://www.genevestigator.com/gv/) with special emphasis on Rab related proteins since they represent several stage of vesicle transport e.g., uncoating, tethering and fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091514PMC
http://dx.doi.org/10.4161/psb.28330DOI Listing

Publication Analysis

Top Keywords

vesicle transport
20
chloroplast localized
12
transport lipids
12
proteins
10
transport
9
gene expression
8
copii proteins
8
emphasis rab
8
rab proteins
8
lipids proteins
8

Similar Publications

Future applications of cyclic antimicrobial peptides in drug delivery.

Expert Opin Drug Deliv

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.

Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!