We tested the hypothesis that nonalcoholic fatty liver disease (NAFLD) is associated with reduced hepatic endothelial nitric oxide synthase (eNOS) activation status via S1177 phosphorylation (p-eNOS) and is prevented by daily voluntary wheel running (VWR). Hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an established model of obesity, type 2 diabetes (T2D) and NAFLD, and normophagic controls [Long-Evans Tokushima Otsuka (LETO)] were studied at 8, 20, and 40 wk of age. Basal hepatic eNOS phosphorylation (p-eNOS/eNOS) was similar between LETO and OLETFs with early hepatic steatosis (8 wk of age) and advanced steatosis, hyperinsulinemia, and hyperglycemia (20 wk of age). In contrast, hepatic p-eNOS/eNOS was significantly lower (P < 0.05) in OLETF rats with T2D advancement and the transition to more advanced NAFLD with inflammation and fibrosis [increased tumor necrosis factor-α (TNF-α), CD68, and CD163 mRNA expression; 40 wk of age]. Reduced hepatic eNOS activation status in 40-wk OLETF rats was significantly correlated with reduced p-Akt/Akt (r = 0.73, P < 0.05), reduced serum insulin (r = 0.59, P < 0.05), and elevated serum glucose (r = -0.78, P < 0.05), suggesting a link between impaired glycemic control and altered hepatic nitric oxide metabolism. VWR by OLETF rats, in conjunction with NAFLD and T2D prevention, normalized p-eNOS/eNOS and p-Akt/Akt to LETO levels. Basal activation of hepatic eNOS and Akt are maintained until advanced NAFLD and T2D development in obese OLETF rats. The prevention of this reduction by VWR may result from maintained insulin sensitivity and glycemic control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097825 | PMC |
http://dx.doi.org/10.1152/japplphysiol.01275.2013 | DOI Listing |
Int J Mol Sci
October 2024
Department of Public Health, Kagawa University Faculty of Medicine, Kagawa 761-0793, Japan.
, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea.
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.
View Article and Find Full Text PDFPLoS One
September 2024
Department of Urology, Faculty of Medical Science, University of Fukui, Fukui, Japan.
Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.
Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.
J Nutr Sci Vitaminol (Tokyo)
September 2024
Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University.
Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!