Quantitative bounds on morphodynamics and implications for reading the sedimentary record.

Nat Commun

Department of Geology and Geophysics, University of Wyoming, 100 E. University Avenue, Dept. 3006, Laramie, Wyoming 82071, USA.

Published: February 2014

Sedimentary rocks are the archives of environmental conditions and ancient planetary surface processes that led to their formation. Reconstructions of Earth's past surface behaviour from the physical sedimentary record remain controversial, however, in part because we lack a quantitative framework to deconvolve internal dynamics of sediment-transport systems from environmental signal preservation. Internal dynamics of landscapes--a consequence of the coupling between bed topography, sediment transport and flow dynamics (morphodynamics)--result in regular and quasiperiodic landforms that abound on the Earth and other planets. Here, using theory and a data compilation of morphodynamic landforms that span a wide range of terrestrial, marine and planetary depositional systems, we show that the advection length for settling sediment sets bounds on the scales over which internal landscape dynamics operate. These bounds provide a universal palaeohydraulic reconstruction tool on planetary surfaces and allow for quantitative identification of depositional systems that may preserve tectonic, climatic and anthropogenic signals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms4298DOI Listing

Publication Analysis

Top Keywords

sedimentary record
8
internal dynamics
8
depositional systems
8
quantitative bounds
4
bounds morphodynamics
4
morphodynamics implications
4
implications reading
4
reading sedimentary
4
record sedimentary
4
sedimentary rocks
4

Similar Publications

Centurial sedimentary record of Cd sources and deposition in Chaohu Lake: insights from Cd stable isotopes.

Environ Res

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Understanding the sources and deposition processes of cadmium (Cd) in freshwater lakes is essential for effective pollution management. This study investigated the Cd concentrations and isotopes in a sediment core from Chaohu Lake, spanning the past 200 years. The results revealed that the Cd concentrations in the sediments decreased with depth, ranging from 1.

View Article and Find Full Text PDF

Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.

View Article and Find Full Text PDF

The Inca and their immediate predecessors provide an exceptional model of how to create high-altitude functional environments that sustainably feed people with a diversity of crops, whilst mitigating erosion, protecting forestry and maintaining soil fertility without the need for large-scale burning. A comparison is provided here of landscape practices and impacts prior to and after the Inca, derived from a unique 4200-year sedimentary record recovered from Laguna Marcacocha, a small, environmentally sensitive lake located at the heart of the Inca Empire. By examining ten selected proxies of environmental change, a rare window is opened on the past, helping to reveal how resilient watershed management and sustainable, climate-smart agriculture were achieved.

View Article and Find Full Text PDF

Direct detection of phycocyanin in sediments by hyperspectral imaging.

J Paleolimnol

December 2024

Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.

Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.

View Article and Find Full Text PDF

Interpreting heavy metal variations in sedimentary records is an important approach to reconstruct historical pollution. However, few studies have investigated the reliability of using different heavy metals in sedimentary records for reconstructing historical pollution. This study retrieved sediment cores from two adjacent remote lakes in North China and investigated their temporal changes in excessive metal fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!