Sedimentary rocks are the archives of environmental conditions and ancient planetary surface processes that led to their formation. Reconstructions of Earth's past surface behaviour from the physical sedimentary record remain controversial, however, in part because we lack a quantitative framework to deconvolve internal dynamics of sediment-transport systems from environmental signal preservation. Internal dynamics of landscapes--a consequence of the coupling between bed topography, sediment transport and flow dynamics (morphodynamics)--result in regular and quasiperiodic landforms that abound on the Earth and other planets. Here, using theory and a data compilation of morphodynamic landforms that span a wide range of terrestrial, marine and planetary depositional systems, we show that the advection length for settling sediment sets bounds on the scales over which internal landscape dynamics operate. These bounds provide a universal palaeohydraulic reconstruction tool on planetary surfaces and allow for quantitative identification of depositional systems that may preserve tectonic, climatic and anthropogenic signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms4298 | DOI Listing |
Environ Res
January 2025
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Understanding the sources and deposition processes of cadmium (Cd) in freshwater lakes is essential for effective pollution management. This study investigated the Cd concentrations and isotopes in a sediment core from Chaohu Lake, spanning the past 200 years. The results revealed that the Cd concentrations in the sediments decreased with depth, ranging from 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.
View Article and Find Full Text PDFAmbio
January 2025
ECOAN, Pasaje Navidad U-10, Urb. Ttio, Wanchaq, Cusco, Peru.
The Inca and their immediate predecessors provide an exceptional model of how to create high-altitude functional environments that sustainably feed people with a diversity of crops, whilst mitigating erosion, protecting forestry and maintaining soil fertility without the need for large-scale burning. A comparison is provided here of landscape practices and impacts prior to and after the Inca, derived from a unique 4200-year sedimentary record recovered from Laguna Marcacocha, a small, environmentally sensitive lake located at the heart of the Inca Empire. By examining ten selected proxies of environmental change, a rare window is opened on the past, helping to reveal how resilient watershed management and sustainable, climate-smart agriculture were achieved.
View Article and Find Full Text PDFJ Paleolimnol
December 2024
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226000, China. Electronic address:
Interpreting heavy metal variations in sedimentary records is an important approach to reconstruct historical pollution. However, few studies have investigated the reliability of using different heavy metals in sedimentary records for reconstructing historical pollution. This study retrieved sediment cores from two adjacent remote lakes in North China and investigated their temporal changes in excessive metal fluxes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!