β-Amyloid peptide (Aβ) plays a central role in the pathogenesis of Alzheimer׳s disease, but in lower amounts it is found in normal brains where it participates in physiological processes and probably regulates synaptic plasticity. This study investigated the effects of physiologically relevant concentrations of Aβ (1 pM-100 nM), fragment 25-35, on glycine-mediated membrane current in acutely isolated rat hippocampal pyramidal neurons using whole-cell patch-clamp technique. We have found that short (600 ms) co-application of glycine with Aβ caused reversible dose-dependent and voltage-independent acceleration of desensitization of glycine current. The peak amplitude of the current remained unchanged. The effect of picomolar Aβ concentrations persisted in the presence of 1 µM Aβ in the pipette solution, implying that Aβ bounds to extracellular site(s). Concentration-dependence curve was N-shaped with maximums at 100 pM and 100 nM, suggesting the existence of two binding sites, which may interact with each other. Glycine current resistant to 100 µM picrotoxin, was insensitive to Aβ, which suggests that Aβ affected mainly homomeric glycine receptors. When Aβ was added to bath solution, besides acceleration of desensitization, it caused reversible dose-dependent reduction of glycine current peak amplitude. These results demonstrate that physiological (picomolar) concentrations of Aβ reversibly augment the desensitization of glycine current, probably by binding to external sites on homomeric glycine receptors. Furthermore, Aβ can suppress the peak amplitude of glycine current, but this effect develops slowly and may be mediated through some intracellular machinery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2014.02.031 | DOI Listing |
Int J Mol Sci
January 2025
School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China.
Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer.
View Article and Find Full Text PDFNat Commun
January 2025
The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
Background: Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.
Objective: The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!