A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sparse Estimation of Conditional Graphical Models With Application to Gene Networks. | LitMetric

Sparse Estimation of Conditional Graphical Models With Application to Gene Networks.

J Am Stat Assoc

Professor of Biostatistics, Yale University, Suite 503, 300 George Street, New Haven, CT 06510.

Published: January 2012

In many applications the graph structure in a network arises from two sources: intrinsic connections and connections due to external effects. We introduce a sparse estimation procedure for graphical models that is capable of isolating the intrinsic connections by removing the external effects. Technically, this is formulated as a graphical model, in which the external effects are modeled as predictors, and the graph is determined by the conditional precision matrix. We introduce two sparse estimators of this matrix using the reproduced kernel Hilbert space combined with lasso and adaptive lasso. We establish the sparsity, variable selection consistency, oracle property, and the asymptotic distributions of the proposed estimators. We also develop their convergence rate when the dimension of the conditional precision matrix goes to infinity. The methods are compared with sparse estimators for unconditional graphical models, and with the constrained maximum likelihood estimate that assumes a known graph structure. The methods are applied to a genetic data set to construct a gene network conditioning on single-nucleotide polymorphisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932550PMC
http://dx.doi.org/10.1080/01621459.2011.644498DOI Listing

Publication Analysis

Top Keywords

graphical models
12
external effects
12
sparse estimation
8
graph structure
8
intrinsic connections
8
introduce sparse
8
conditional precision
8
precision matrix
8
sparse estimators
8
sparse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!