Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In many applications the graph structure in a network arises from two sources: intrinsic connections and connections due to external effects. We introduce a sparse estimation procedure for graphical models that is capable of isolating the intrinsic connections by removing the external effects. Technically, this is formulated as a graphical model, in which the external effects are modeled as predictors, and the graph is determined by the conditional precision matrix. We introduce two sparse estimators of this matrix using the reproduced kernel Hilbert space combined with lasso and adaptive lasso. We establish the sparsity, variable selection consistency, oracle property, and the asymptotic distributions of the proposed estimators. We also develop their convergence rate when the dimension of the conditional precision matrix goes to infinity. The methods are compared with sparse estimators for unconditional graphical models, and with the constrained maximum likelihood estimate that assumes a known graph structure. The methods are applied to a genetic data set to construct a gene network conditioning on single-nucleotide polymorphisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932550 | PMC |
http://dx.doi.org/10.1080/01621459.2011.644498 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!