Objective: The pathogenesis of Behçet's disease (BD), an inflammatory disease with multisystem involvement, remains poorly understood. This study was undertaken to investigate whether there are DNA methylation abnormalities in BD that might contribute to the pathogenesis of the disease.
Methods: We examined genome-wide DNA methylation patterns in monocytes and CD4+ T cells from 16 male patients with untreated BD and age, sex, and ethnicity-matched healthy controls. Additional samples were collected from 12 of the same BD patients after treatment and achievement of disease remission. Genome-wide DNA methylation patterns were assessed using the Infinium HumanMethylation450 BeadChip array, which includes >485,000 individual methylation sites across the genome.
Results: We identified 383 CpG sites in monocytes, and 125 in CD4+ T cells, that were differentially methylated between BD patients and controls. Bioinformatic analysis revealed a pattern of aberrant DNA methylation among genes that regulate cytoskeletal dynamics, suggesting that aberrant DNA methylation of multiple classes of structural and regulatory proteins of the cytoskeleton might contribute to the pathogenesis of BD. Further, treatment of BD modified the differences in DNA methylation observed in patients compared to controls; indeed, among CpG sites that were differentially methylated after disease remission versus before treatment, there was widespread reversal of the direction of aberrant DNA methylation observed between the patient and control groups.
Conclusion: The results of this epigenome-wide study-the first such study in BD-provide strong evidence that epigenetic modification of cytoskeletal dynamics underlies the pathogenesis of BD and its response to treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096298 | PMC |
http://dx.doi.org/10.1002/art.38409 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFGeroscience
January 2025
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.
View Article and Find Full Text PDFNutrients
December 2024
2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia.
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Nutrients
December 2024
Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
Background And Objectives: Depression often results in premature aging, which increases the risk of other chronic diseases, but very few studies have analyzed the association between epigenetic biomarkers of aging and depressive symptoms. Similarly, limited research has examined the joint effects of adherence to the Mediterranean diet (MedDiet) and chronotype on depressive symptoms, accounting for sex differences. Therefore, these are the objectives of our investigation in a Mediterranean population at high cardiovascular risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!