Pristine, barium-doped, and strontium-doped hollow nanoparticles (p-HNPs, Ba-HNP, and Sr-HNP; HNPs) are prepared by sonication-mediated etching and redeposition (SMER) method and alkali-earth-metal hydroxide solution treatment. The HNPs are investigated to facilitate synergetic neuronal differentiation through alkali-earth-metal doping and in conjunction with nerve growth factor (NGF). PC12 cells are used as model cells for neuronal differentiation. The differentiation efficiency is improved in the presence of the HNPs+NGF, and the neurite length is in the order of Sr-HNP+NGF > Ba-HNP+NGF > p-HNP+NGF > NGF. Silica/titania have increasing effect on both differentiation efficiency and neurite length, and doped barium/strontium influences additional elongation of the average neurite length. Take advantage of hollow structure, NGF is encapsulated into HNPs, and they are further applied for directly inducing differentiation. The maximum differentiation efficiency is 67% in presence of the NGF-encapsulated Sr-HNP, which was 1.3 times higher than previous research. Furthermore, the neurite length is also 2.7 times higher than MnO2 decorated poly(3,4-ethylenedioxythiophene) nanoellipsoids. Ba- and Sr-HNP may offer a possibility for novel application of metal-hybrid nanomaterials for cell differentiation, and can be expanded to other cellular applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201300572 | DOI Listing |
Alzheimers Res Ther
December 2024
Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.
Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.
J Nanobiotechnology
December 2024
Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized FeO-MnO@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF).
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Otology/Neurotology, Pacific Neuroscience Institute, Los Angeles, California, USA.
Auditory perception is established through experience-dependent stimuli exposure during sensitive developmental periods; however, little is known regarding the structural development of the central auditory pathway in humans. The present study characterized the regional developmental trajectories of the ascending auditory pathway from the brainstem to the auditory cortex from infancy through adolescence using a novel diffusion MRI-based tractography approach and along-tract analyses. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to quantify the magnitude and timing of auditory pathway microstructural maturation.
View Article and Find Full Text PDFCereb Cortex
December 2024
Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom.
Kalirin is a multidomain protein with important roles in neurite outgrowth, and synaptic spine formation and remodeling. Genetic and pathophysiological links with various neuropsychiatric disorders associated with synaptic dysfunction and cognitive impairment have sparked interest in its potential as a pharmacological target. Multiple Kalirin proteoforms are detected in the adult human brain, yet we know little about the diversity of the transcripts that encode them or their tissue profiles.
View Article and Find Full Text PDFBurns Trauma
December 2024
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
Background: The extracellular matrix (ECM) provides essential physical support and biochemical cues for diverse biological activities, including tissue remodelling and regeneration, and thus is commonly applied in the construction of artificial peripheral nerve grafts. Nevertheless, the specific functions of essential peripheral nerve ECM components have not been fully determined. Our research aimed to differentially represent the neural activities of main components of ECM on peripheral nerve regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!