Remediation of acid mine drainage (AMD)-contaminated soil by Phragmites australis and rhizosphere bacteria.

Environ Sci Pollut Res Int

Department of Civil Engineering Auburn Science and Engineering Center (ASEC) 210, University of Akron, Akron, OH, 44325-3905, USA.

Published: June 2014

Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8 ± 0.5 × 10(-6) mol plant(-1) (Mn), 1.4 ± 0.1 × 10(-3) mol plant(-1) (Fe), and 1.0 ± 0.1 × 10(-4) mol plant(-1) (Al) in spiked soil without CA to 22.2 ± 0.5 × 10(-6) mol plant(-1) (Mn), 3.5 ± 0.06 × 10(-3) mol plant(-1) (Fe), and 5.0 ± 0.2 × 10(-4) mol plant(-1) (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-2642-0DOI Listing

Publication Analysis

Top Keywords

acid mine
8
mine drainage
8
amd-contaminated soil
8
phragmites australis
8
rhizosphere bacteria
8
soil
7
remediation acid
4
drainage amd-contaminated
4
soil phragmites
4
australis rhizosphere
4

Similar Publications

The fully bio-based bilayered flame retardant treatment for paper via natural bio-materials.

Front Chem

December 2024

School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.

In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.

View Article and Find Full Text PDF

Historical mining towns: The establishment of 'Soil Planning Areas' for the risk management of contaminated soil.

J Hazard Mater

December 2024

Saxon State Office for Environment, Agriculture and Geology, Halsbrückerstr. 31a, Freiberg 09599, Germany.

Historical mining towns face financial challenges with the proposed Soil Monitoring Law of the European Union, which will require the management of soil contamination, since remediating soil in densely populated towns and cities is challenging. We compared the environmental impact of sulfide ore mining in the urban area of Outokumpu in Finland with that of other European sites, focusing on soil contamination. Soil sampling revealed that mine tailings were historically used in road construction.

View Article and Find Full Text PDF

Rapeseed meal (RSM), a protein-rich byproduct, holds potential as a high-quality animal feed, but nitrile compounds derived from glucosinolates (GSLs) in RSM pose a toxicity risk. Nitrilases, enzymes that hydrolyze toxic nitriles to carboxylic acids, offer a potential solution for detoxification. However, the low thermal stability of nitrilases restricts their industrial applicability.

View Article and Find Full Text PDF

Characterizing deep subsurface microbial communities informs our understanding of Earth's biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the family, Frackibacter.

View Article and Find Full Text PDF

Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!