Hyperuricemia is associated with kidney complications including glomerulosclerosis and mesangial cell (MC) proliferation by poorly understood mechanisms. The present study investigated the underlying mechanisms that mediate uric acid (UA)-induced MC proliferation. A rat MC line, HBZY-1, was treated with various concentrations of UA in the presence or absence of a specific extracellular-regulated protein kinase 1/2 (ERK1/2) inhibitor (U0126), apocynin. UA dose dependently stimulated MC proliferation as shown by increased DNA synthesis and number of cells in the S and G2 phases in parallel with the upregulation of cyclin A2 and cyclin D1. In addition, UA time dependently promoted MC proliferation and significantly increased phosphorylation of ERK1/2 but not c-Jun NH2-terminal kinase and p38 MAPK in MCs as assessed by immunoblotting. Inhibition of ERK1/2 signaling via U0126 markedly blocked UA-induced MC proliferation. More importantly, UA induced intracellular reactive oxygen species (ROS) production of MCs dose dependently, which was completely blocked by apocynin, a specific NADPH oxidase inhibitor. Toll-like receptor (TLR)2 and TLR4 signaling had no effect on NADPH-derived ROS and UA-induced MC proliferation. Interestingly, pretreatment with apocynin inhibited ERK1/2 activation, the upregulation of cyclin A2 and cyclin D1, and MC proliferation. In conclusion, UA-induced MC proliferation was mediated by NADPH/ROS/ERK1/2 signaling pathway. This novel finding not only reveals the mechanism of UA-induced MC cell proliferation but also provides some potential targets for future treatment of UA-related glomerular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00565.2013DOI Listing

Publication Analysis

Top Keywords

ua-induced proliferation
16
cell proliferation
12
proliferation
10
reactive oxygen
8
oxygen species
8
mesangial cell
8
dose dependently
8
proliferation increased
8
upregulation cyclin
8
cyclin cyclin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!