Mutations of p53 cause not only loss of wild-type function but also gain of novel oncogenic functions (GOF). Accumulating evidence suggest that p53 hotspot mutations may confer different types and magnitudes of GOF. Here we add support to the heterogeneity of mutant p53 GOF by showing their unequal association with early tumor onset and spectrum of tumor types. We stratified Li-Fraumeni syndrome (LFS) patients according to carried p53 mutations using data from the updated p53 germline mutation database. When compared to loss-of-function nonsense mutations, the R282 GOF mutation associated with significantly earlier onset, while the G245 mutation displayed later onset. The R175, Y220, R248, R282 and nonsense mutations showed preferential distribution in certain cancer types, which varied in the age of onset. Multivariate COX regression model adjusting for cancer types and patient sex suggested that nonsense and G245 mutations had lower risk than R248 for early onset, suggesting unequal strengths of mutant GOF effects. Our results suggest that Li-Fraumeni syndrome can be subdivided into subtypes linking to unequal GOF effects of p53 mutations. These findings have potential implications in the prevention, early detection and targeted treatment of LFS tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936234 | PMC |
http://dx.doi.org/10.1038/srep04223 | DOI Listing |
JNCI Cancer Spectr
January 2025
Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
Li-Fraumeni syndrome is a cancer predisposition syndrome caused by pathogenic TP53 germline variants and associated with a high lifelong cancer risk. We analysed the German LFS registry that contains data on 304 individuals. Cancer phenotypes were correlated with variants grouped according to their ability to transactivate target genes in a yeast assay using a traditional (non-functional, partially-functional) and a novel (clusters A, B, C) classification of variants into different groups.
View Article and Find Full Text PDFJpn J Clin Oncol
January 2025
Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan.
A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.
View Article and Find Full Text PDFFam Cancer
January 2025
Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Perivascular epithelioid cell tumors (PEComas) belong to a family of rare mesenchymal tumors composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. Li-Fraumeni syndrome (LFS), an autosomal dominant cancer predisposition syndrome, is caused by a germline variant of the tumor suppressor gene TP53. Here, we report the case of a 20-year-old woman with LFS who developed a PEComa of the liver.
View Article and Find Full Text PDFBull Cancer
January 2025
Department of Paediatric Oncology, Institut d'Haematologie et d'Oncologie Pédiatrique, Centre Léon-Bérard, Lyon, France. Electronic address:
Bone sarcomas, constituting less than 1% of malignant neoplasms across all age groups, are rare tumours possibly associated with genetic susceptibility syndromes. This review aims to provide recommendations for the detection of cancer predisposition syndromes associated with bone sarcomas and managing affected patients. Recommendations were formulated by a multidisciplinary working and reviewing group from GROUPOS and SFCE oncogenetic's group, including geneticists, oncologists, and radiologists.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.
Background: Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!