Background: Distraction osteogenesis is a powerful reconstructive technique for bone growth and repair. An angiogenic means of enhancing the efficacy of this metabolically demanding procedure would be beneficial in expanding its therapeutic potential. The authors posit that the angiogenic effect of deferoxamine, an iron chelator that has been shown to increase angiogenesis, will improve bone regeneration by means of augmentations in quality and quantity of bone and bone-producing cells.
Methods: Two groups of rats (n = 12) underwent surgical external fixation and subsequent distraction. During the distraction stage, the experimental deferoxamine group (n = 5) was treated with injections into the distraction gap. After 28 days of consolidation, mandibles were harvested and prepared for histologic analysis.
Results: The authors found a proliferation of osteocytes in the deferoxamine-treated group when compared with the regenerate of the control group. Deferoxamine effected a significant increase in osteocytes and an increase in bone volume fraction, with subsequent decreased osteoid volume fraction. The data also demonstrated no significant difference in empty lacunae.
Conclusions: The authors' study demonstrates the effectiveness of deferoxamine treatment to enhance the number of osteocytes within the regenerate in a murine mandibular distraction osteogenesis model. Maintenance of full lacunae supports the authors' finding of a robust cellular response to deferoxamine therapy. These results suggest that the angiogenic capabilities of deferoxamine translate into an increase in the number of bone-forming cells in the regenerate. Deferoxamine may have utility in optimizing bone formation in distraction osteogenesis and lead to superior reconstructive capabilities for craniofacial surgeons in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484577 | PMC |
http://dx.doi.org/10.1097/01.prs.0000438050.36881.a9 | DOI Listing |
J Craniofac Surg
January 2025
Division of Plastic and Reconstructive Surgery, Children's National Hospital.
Facial nerve dysfunction (FND) is a well-recognized but poorly documented complication of mandibular distraction osteogenesis (MDO) for Robin sequence (RS). This study aims to document the authors' experiences with FND and identify risk factors associated with this adverse event. A retrospective review of a prospectively gathered database was performed to identify patients with RS who underwent MDO at the authors' institution from March 2016 to June 2023.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University.
Background: This paper presents the authors' team's research on a craniofacial surgical robot developed in China. Initiated in 2011 with government funding, the craniofacial surgical robot project was officially launched in Shanghai, developed jointly by the Ninth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine and the Shanghai Jiao Tong University medical-engineering team. Currently, based on multiple rounds of model surgeries, animal experiments, and clinical trials, our team is applying for approval as a Class III medical device from the National Medical Products Administration (NMPA).
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
Objective: Finite element analysis (FEA) of the biomechanical properties of the modified extraoral distractor device used in the mandibular distraction of craniofacial microsomia patients.
Materials And Methods: Finite element analysis (FEA) models of 5 patients under 2 working conditions, the instance when the distractor is activated and when the distractor participates in mastication, were included in the current study. To conduct the FEA, load boundary conditions (35.
J Craniofac Surg
December 2024
Member of Sociedad Argentina de Ortodoncia, Member of International Society of Craneofacial Surgery, Member of Asociación Latinoamericana de Ortodoncia, Buenos Aires, Argentina.
Craniofacial syndromes present with exorbitism and airway obstruction as a result of upper and middle facial hypoplasia. Classical subcranial Lefort III (LF III) or monobloc distraction osteogenesis (DO) using an external craniofacial device is used to treat these deformities. These procedures are done during mixed dentition, in most cases, advancing an abnormal face, to a more normal position.
View Article and Find Full Text PDFCleft Palate Craniofac J
January 2025
Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
Objective: This study compares mandibular distraction osteogenesis (MDO) and tracheostomy in managing severe airway obstruction in patients with the Pierre Robin sequence (PRS).
Design: A systematic review and meta-analysis following PRISMA guidelines was performed. Literature searches were conducted across PubMed, ScienceDirect, Cochrane Library, Scopus, E.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!