Drug-resistant micrometastases that escape standard therapies often go undetected until the emergence of lethal recurrent disease. Here, we show that it is possible to treat microscopic tumors selectively using an activatable immunoconjugate. The immunoconjugate is composed of self-quenching, near-infrared chromophores loaded onto a cancer cell-targeting antibody. Chromophore phototoxicity and fluorescence are activated by lysosomal proteolysis, and light, after cancer cell internalization, enabling tumor-confined photocytotoxicity and resolution of individual micrometastases. This unique approach not only introduces a therapeutic strategy to help destroy residual drug-resistant cells but also provides a sensitive imaging method to monitor micrometastatic disease in common sites of recurrence. Using fluorescence microendoscopy to monitor immunoconjugate activation and micrometastatic disease, we demonstrate these concepts of "tumor-targeted, activatable photoimmunotherapy" in a mouse model of peritoneal carcinomatosis. By introducing targeted activation to enhance tumor selectively in complex anatomical sites, this study offers prospects for catching early recurrent micrometastases and for treating occult disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956156PMC
http://dx.doi.org/10.1073/pnas.1319493111DOI Listing

Publication Analysis

Top Keywords

micrometastatic disease
8
selective treatment
4
treatment monitoring
4
monitoring disseminated
4
disseminated cancer
4
micrometastases
4
cancer micrometastases
4
micrometastases vivo
4
vivo dual-function
4
dual-function activatable
4

Similar Publications

Background Management of retroperitoneal liposarcoma (RPLPS) is challenging and recurrence rates remain high despite aggressive surgical resections. Preoperative radiation alone lacks definitive benefit, thus we sought to evaluate combined chemoradiotherapy with the potential to enhance local efficacy of radiation as well as control micrometastatic disease. We assessed the safety and tolerability of preoperative eribulin, a cytotoxic microtubule inhibitor approved for the treatment of advanced liposarcoma, in combination with radiation in patients with RPLPS.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) is the most common cancer in men. Recurrence may occur in up to half of patients initially treated with curative intent for high-risk localised/locally advanced PCa. Pelvic nodal recurrence is common in this setting, but no clear standard of care exists for these patients, with potential therapeutic approaches including stereotactic body radiotherapy (SBRT) to the involved node(s) alone, extended nodal irradiation (ENI) to treat sites of potential micrometastatic spread in addition to involved node(s) and androgen deprivation therapy with or without additional systemic anticancer therapies.

View Article and Find Full Text PDF

Molecular Imaging of Ovarian Follicles and Tumors With Near-Infrared II Bioconjugates.

Adv Mater

December 2024

Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.

Follicular tracking is typically conducted using ultrasound technology, but its effectiveness is constrained by limited resolution. High-resolution imaging of deep tissues can be accomplished using luminescence imaging in the near-infrared II window (NIR-II, 1000-1700 nm); however, the contrast agents that are used lack specificity. Here, it is reported that the FDA-approved indocyanine green (ICG)-conjugated recombinant human chorionic gonadotropin (hCG) protein can target early follicles with long-term effectiveness.

View Article and Find Full Text PDF

Pretargeted alpha therapy in MUC16-positive high-grade serous ovarian cancer.

Nucl Med Biol

November 2024

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Background: Peritoneal metastasis with micrometastatic cell clusters is a common feature of advanced ovarian cancer. Targeted alpha therapy (TAT) is an attractive approach for treating micrometastatic diseases as alpha particles release enormous amounts of energy within a short distance. A pretargeting approach - leveraging the inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctene (TCO) - can minimize off-target toxicity related to TAT, often associated with full-length antibodies.

View Article and Find Full Text PDF

Background: Therapies shown to improve outcomes in patients with recurrent cancers are commonly used in the neoadjuvant setting to optimize surgery, reduce radiation fields, and treat micro-metastatic disease. While pre-radiation chemotherapy (PRC) use has flourished in systemic cancers, it has not in glioblastomas. This review documents these trajectories and highlights the potential of PRC to rapidly and safely screen cytotoxic drugs for efficacy in patients with newly diagnosed glioblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!