A novel and highly efficient cyclization method has been developed to access a new class of cyclic carbo-isosteric depsipeptides and carbo-isosteric peptides. Our strategy requires easily accessible C-terminal methyl ketone ester or amide functionalized linear precursors as starting materials. The well-known reductive amination has then been used to afford cyclic tetra- to octa-pseudopeptides via a selective intramolecular formation of a glycine peptidomimetic unit under moderate dilution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol5003797 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2015
Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis International AG, CH-4002 Basel, Switzerland.
The title compound, cyclo(Phe(1)-d-Ala(2)-Gly(3)-Phe(4)-APO(5)), C26H32N4O5, is the minor diastereoisomer of a cyclic penta-peptidomimetic analogue containing a novel 2-amino-propyl lactone (APO) motif, which displays the same number of atoms as the native amino acid glycine and has a methyl group in place of the carbonyl O atom. The crystal structure presented here allows the analysis of the secondary structure of this unprecedented cyclic carbo-isosteric depsipeptide. The conformation of the central ring is stabilized by an intra-molecular N-H⋯O hydrogen bond between the carbonyl O atom of the first residue (Phe(1)) and the amide group H atom of the fourth residue (Phe(4)).
View Article and Find Full Text PDFOrg Lett
March 2014
Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis International AG, Postfach, CH-4002 Basel, Switzerland.
A novel and highly efficient cyclization method has been developed to access a new class of cyclic carbo-isosteric depsipeptides and carbo-isosteric peptides. Our strategy requires easily accessible C-terminal methyl ketone ester or amide functionalized linear precursors as starting materials. The well-known reductive amination has then been used to afford cyclic tetra- to octa-pseudopeptides via a selective intramolecular formation of a glycine peptidomimetic unit under moderate dilution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!