Background: Quantification of molecular cell processes is important for prognostication and treatment individualization of head and neck cancer (HNC). However, individual tumor comparison can show discord in upregulation similarities when analyzing multiple biological mechanisms. Elaborate tumor characterization, integrating multiple pathways reflecting intrinsic and microenvironmental properties, may be beneficial to group most uniform tumors for treatment modification schemes. The goal of this study was to systematically analyze if immunohistochemical (IHC) assessment of molecular markers, involved in treatment resistance, and 18F-FDG PET parameters could accurately distinguish separate HNC tumors.

Methods: Several imaging parameters and texture features for 18F-FDG small-animal PET and immunohistochemical markers related to metabolism, hypoxia, proliferation and tumor blood perfusion were assessed within groups of BALB/c nu/nu mice xenografted with 14 human HNC models. Classification methods were used to predict tumor line based on sets of parameters.

Results: We found that 18F-FDG PET could not differentiate between the tumor lines. On the contrary, combined IHC parameters could accurately allocate individual tumors to the correct model. From 9 analyzed IHC parameters, a cluster of 6 random parameters already classified 70.3% correctly. Combining all PET/IHC characteristics resulted in the highest tumor line classification accuracy (81.0%; cross validation 82.0%), which was just 2.2% higher (p = 5.2×10-32) than the performance of the IHC parameter/feature based model.

Conclusions: With a select set of IHC markers representing cellular processes of metabolism, proliferation, hypoxia and perfusion, one can reliably distinguish between HNC tumor lines. Addition of 18F-FDG PET improves classification accuracy of IHC to a significant yet minor degree. These results may form a basis for development of tumor characterization models for treatment allocation purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940254PMC
http://dx.doi.org/10.1186/1471-2407-14-130DOI Listing

Publication Analysis

Top Keywords

18f-fdg pet
16
metabolism proliferation
8
proliferation hypoxia
8
head neck
8
tumor
8
tumor characterization
8
parameters accurately
8
tumor lines
8
ihc parameters
8
classification accuracy
8

Similar Publications

Background: Penile metastasis originating from prostate cancer is an extremely rare condition, typically associated with a poor prognosis. Therapeutic approaches are not well established and may require individualized adaptation based on clinical assessment. Radiotherapy is commonly utilized to alleviate symptoms.

View Article and Find Full Text PDF

Phosphaturic mesenchymal tumor (PMT) is a rare benign mesenchymal tumor characterized by excessive secretion of fibroblast growth factor 23 (FGF23), leading to phosphate loss and systemic osteomalacia. Despite recent progress in PMT research, no consensus on diagnosis and treatment guidelines has been established. This case series describes the clinical and pathological features of six pathologically confirmed PMT patients treated at the Third Affiliated Hospital of Sun Yat-sen University from 2010 to 2024, aiming to provide new insights for the management of this condition.

View Article and Find Full Text PDF

To establish and validate a nomogram based on clinical characteristics and metabolic parameters derived from F-fluorodeoxyglucose positron emission tomography and computed tomography (F-FDG PET/CT) for prediction of high-grade patterns (HGP) in invasive lung adenocarcinoma. The clinical and PET/CT image data of 311 patients who were confirmed invasive lung adenocarcinoma and underwent pre-treatment F-FDG PET/CT scan in Beijing Hospital between October 2017 and March 2022 were retrospectively collected. The enrolled patients were divided into HGP group (196 patients) and non-HGP group (115 patients) according to the presence and absence of HGP.

View Article and Find Full Text PDF

Purpose: There are attempts to assess tumor heterogeneity by texture analysis. However, the ordered subsets-expectation maximization (OSEM) reconstruction method has problems depicting heterogeneities. The aim of this study was to identify image reconstruction parameters that improve the ability to depict internal tumor necrosis using a self-made phantom that simulates internal necrosis.

View Article and Find Full Text PDF

Recovered water - HO from the F[FDG] production as liquid radioactive waste.

Appl Radiat Isot

January 2025

Department of Medical Physics, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland; Department of Medical Imaging Technology, Medical University of Lodz, Ul. Lindleya 6, 90-131, Łódź, Poland.

In this study, ten recovered water samples were analysed using gamma spectrometry and Liquid Scintillation Counting techniques for identification of radioactive impurities (quality and quantity) and for radioactive waste qualifications. The presence of several radioactive isotopes of H, Co Mn in the recovered [O] water irradiated with 11 MeV protons used to produce [F] fluoride by the O(p,n)F reaction has been confirmed. Radioactive impurities were generated directly in enriched water or washed out from activated Havar foil, or tantalum body target material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!