Cross-frequency coupling is hypothesized to play a functional role in neural computation. We apply phase resetting theory to two types of cross-frequency coupling that can occur when a slower oscillator periodically forces one or more oscillators: phase-phase coupling, in which the two oscillations are phase-locked, and phase-amplitude coupling, in which the amplitude of the driven oscillation is modulated. Our first result is that the shape of the phase resetting curve predicts the tightness of locking to a pulsatile forcing periodic input at any ratio of forced to intrinsic period; the tightness of the locking decreases as the ratio increases. Theoretical expressions were obtained for the probability density of the phases for a population of heterogeneous oscillators or a noisy single oscillator. Results were confirmed using two types of simulated networks and experiments on hippocampal CA1 neurons. Theoretical expressions were also obtained and confirmed for the probability density of N spike times within a single cycle of low frequency forcing. The second result is a suggested mechanism for phase-amplitude coupling in which progressive desynchronization leads to decreasing amplitude during a low frequency forcing cycle. Network simulations confirmed the theoretical viability of this mechanism, and that it generalizes to more diffuse input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972019PMC
http://dx.doi.org/10.3109/0954898X.2014.886781DOI Listing

Publication Analysis

Top Keywords

phase-amplitude coupling
12
cross-frequency coupling
8
phase resetting
8
tightness locking
8
theoretical expressions
8
probability density
8
low frequency
8
frequency forcing
8
coupling
6
heterogeneity noise
4

Similar Publications

Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy.

Neurocrit Care

January 2025

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.

Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.

View Article and Find Full Text PDF

Temporal ablation of the ciliary protein IFT88 alters normal brainwave patterns.

Sci Rep

January 2025

Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.

Article Synopsis
  • The primary cilium is a crucial organelle involved in various signaling pathways, and its dysfunction is linked to conditions like Bardet-Biedl syndrome, Alzheimer's, and autism, all of which can lead to cognitive impairment.
  • Researchers studied the effects of temporarily disabling the IFT88 gene, vital for cilia formation, in adult mice to understand cilia's role in brain activity.
  • The findings showed that mice lacking functional cilia had significant learning deficits and abnormal brainwave patterns, emphasizing the importance of primary cilia for proper neural function and memory in adults.
View Article and Find Full Text PDF

Light environment in the Arctic differs widely with the seasons. Studies of relationships between objectively measured circadian phase and amplitude of light exposure and melatonin in community-dwelling Arctic residents are lacking. This investigation combines cross-sectional (n = 24-62) and longitudinal (n = 13-27) data from week-long actigraphy (with light sensor), 24-h salivary melatonin profiles, and proxies of metabolic health.

View Article and Find Full Text PDF

Unlabelled: Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses.

View Article and Find Full Text PDF

Theta-Gamma Decoupling - A neurophysiological marker of impaired reward processing in Parkinson's disease.

Brain Res

December 2024

Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India. Electronic address:

Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!