Salmonellosis outbreaks in Europe, the United States, and Latin America have been associated with contaminated food derivatives including meat from the poultry industry. Salmonella grown under iron-limiting conditions has the capability to increase concentration of several iron-regulated outer-membrane proteins to augment the acquisition of the metal. These proteins have been proved to have immunogenic properties. Our aim was to increase the relative expression of iroN, fepA, and cirA in Salmonella Enteritidis domestic strain. Furthermore, we proposed a 3-dimensional structure model for each protein to predict and locate antigenic peptides. Our eventual objective is to produce an effective vaccine against regional avian salmonellosis. Two simple factorial designs were carried out to discriminate between 2 nitrogen sources and determine chelating-agent addition timing to augment relative gene expression. Two antigenic peptides located at the external face of each protein and 2 typical domains of iron-regulated outer-membrane proteins, plug and TonB-dep-Rec, were identified from the 3-dimensional models. Tryptone was selected as the best nitrogen source based on growth rate (μx = 0.36 h(-1)) and biomass productivity (Px = 0.9 g•h(-1)•L(-1)) as determined by a general factorial design. Optimum timing for chelating agent addition was in the middle of the log phase, which allowed relative expressions at 4 h of culture. Increase in iroN, fepA, and cirA relative expression was favored by the length of log phase and the addition of chelating agent, which decreased chelating toxicity and enhanced cell growth rate.

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps.2012-02993DOI Listing

Publication Analysis

Top Keywords

iron fepa
12
fepa cira
12
gene expression
8
salmonella enteritidis
8
iron-regulated outer-membrane
8
outer-membrane proteins
8
relative expression
8
antigenic peptides
8
growth rate
8
chelating agent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!